4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Stabilized Independent Component Analysis outperforms other methods in finding reproducible signals in tumoral transcriptomes

      Preprint

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Matrix factorization methods are widely exploited in order to reduce dimensionality of transcriptomic datasets to the action of few hidden factors (metagenes). Applying such methods to similar independent datasets should yield reproducible inter-series outputs, though it was never demonstrated yet. Here we systematically test state-of-art methods of matrix factorization on several transcriptomic datasets of the same cancer type. Inspired by concepts of evolutionary bioinformatics, we design a new framework based on Reciprocally Best Hit (RBH) graphs in order to benchmark reproducibility. We show that a particular protocol of application of Independent Component Analysis (ICA), accompanied by a stabilisation procedure, leads to a significant increase in the inter-series output reproducibility. Moreover, we show that the signals detected through this method are systematically more interpretable than those of other state-of-art methods. We developed a user-friendly tool BIODICA for performing the Stabilized ICA-based RBH meta-analysis. We apply this methodology to the study of colorectal cancer (CRC) for which 14 independent publicly available transcriptomic datasets can be collected. The resulting RBH graph maps the landscape of interconnected factors that can be associated to biological processes or to technological artefacts. These factors can be used as clinical biomarkers or robust and tumor-type specific transcriptomic signatures of tumoral cells or tumoral microenvironment. Their intensities in different samples shed light on the mechanistic basis of CRC molecular subtyping.

          Related collections

          Author and article information

          Journal
          bioRxiv
          May 09 2018
          Article
          10.1101/318154
          4713ffe4-fed8-4a5c-be64-b56680e2b212
          © 2018
          History

          Quantitative & Systems biology
          Quantitative & Systems biology

          Comments

          Comment on this article