69
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Global priorities for national carnivore conservation under land use change

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mammalian carnivores have suffered the biggest range contraction among all biodiversity and are particularly vulnerable to habitat loss and fragmentation. Therefore, we identified priority areas for the conservation of mammalian carnivores, while accounting for species-specific requirements for connectivity and expected agricultural and urban expansion. While prioritizing for carnivores only, we were also able to test their effectiveness as surrogates for 23,110 species of amphibians, birds, mammals and reptiles and 867 terrestrial ecoregions. We then assessed the risks to carnivore conservation within each country that makes a contribution to global carnivore conservation. We found that land use change will potentially lead to important range losses, particularly amongst already threatened carnivore species. In addition, the 17% of land targeted for protection under the Aichi Target 11 was found to be inadequate to conserve carnivores under expected land use change. Our results also highlight that land use change will decrease the effectiveness of carnivores to protect other threatened species, especially threatened amphibians. In addition, the risk of human-carnivore conflict is potentially high in countries where we identified spatial priorities for their conservation. As meeting the global biodiversity target will be inadequate for carnivore protection, innovative interventions are needed to conserve carnivores outside protected areas to compliment any proposed expansion of the protected area network.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Recovery of large carnivores in Europe's modern human-dominated landscapes.

          The conservation of large carnivores is a formidable challenge for biodiversity conservation. Using a data set on the past and current status of brown bears (Ursus arctos), Eurasian lynx (Lynx lynx), gray wolves (Canis lupus), and wolverines (Gulo gulo) in European countries, we show that roughly one-third of mainland Europe hosts at least one large carnivore species, with stable or increasing abundance in most cases in 21st-century records. The reasons for this overall conservation success include protective legislation, supportive public opinion, and a variety of practices making coexistence between large carnivores and people possible. The European situation reveals that large carnivores and people can share the same landscape. Copyright © 2014, American Association for the Advancement of Science.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Status and ecological effects of the world's largest carnivores.

            Large carnivores face serious threats and are experiencing massive declines in their populations and geographic ranges around the world. We highlight how these threats have affected the conservation status and ecological functioning of the 31 largest mammalian carnivores on Earth. Consistent with theory, empirical studies increasingly show that large carnivores have substantial effects on the structure and function of diverse ecosystems. Significant cascading trophic interactions, mediated by their prey or sympatric mesopredators, arise when some of these carnivores are extirpated from or repatriated to ecosystems. Unexpected effects of trophic cascades on various taxa and processes include changes to bird, mammal, invertebrate, and herpetofauna abundance or richness; subsidies to scavengers; altered disease dynamics; carbon sequestration; modified stream morphology; and crop damage. Promoting tolerance and coexistence with large carnivores is a crucial societal challenge that will ultimately determine the fate of Earth's largest carnivores and all that depends upon them, including humans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The status of the world's land and marine mammals: diversity, threat, and knowledge.

              Knowledge of mammalian diversity is still surprisingly disparate, both regionally and taxonomically. Here, we present a comprehensive assessment of the conservation status and distribution of the world's mammals. Data, compiled by 1700+ experts, cover all 5487 species, including marine mammals. Global macroecological patterns are very different for land and marine species but suggest common mechanisms driving diversity and endemism across systems. Compared with land species, threat levels are higher among marine mammals, driven by different processes (accidental mortality and pollution, rather than habitat loss), and are spatially distinct (peaking in northern oceans, rather than in Southeast Asia). Marine mammals are also disproportionately poorly known. These data are made freely available to support further scientific developments and conservation action.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                01 April 2016
                2016
                : 6
                : 23814
                Affiliations
                [1 ]Department of Biosciences, University of Helsinki , FI-00014, Helsinki, Finland
                [2 ]School of Life Sciences, University of KwaZulu-Natal , Durban 4041, South Africa
                [3 ]Department of Genetics, Evolution and Environment, University College , London, United Kingdom
                [4 ]Panthera, New York , New York, United States of America
                [5 ]Rutherford Appleton Laboratory, Science & Technology Facilities Council, Harwell Oxford Campus , Didcot OX11 0QX, UK
                [6 ]Department of Geosciences and Geography, University of Helsinki , FI-00014, Helsinki, Finland
                [7 ]Faculty Earth and Life Sciences, VU University Amsterdam , De Boelelaan 1087, Amsterdam, 1081 HV, The Netherlands
                [8 ]Department of Geosciences and Geography, University of Cambridge , Downing Place, Cambridge, CB2 3EN, UK
                Author notes
                Article
                srep23814
                10.1038/srep23814
                4817124
                27034197
                4714a449-f128-4b19-b52c-46f5fb193c77
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 25 August 2015
                : 15 March 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article