10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Sex, stress and steroids

      1 , 1 , 2
      European Journal of Neuroscience
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The hypothalamo-pituitary-adrenal (HPA) axis plays a key role in the neuroendocrine response to stress and in maintaining physiological homoeostasis. However, stress that is chronic in nature can lead to HPA axis dysfunction and increase the risk for developing affective disorders, particularly if the stress is experienced during vulnerable periods in life. Sex differences in how the HPA axis responds to stress are well established, with females typically displaying heightened responses. The underlying cause of these sex differences is important to understand, as many neuropsychiatric disorders disproportionately affect females. Much research has provided evidence for gonadal sex steroids in underpinning sex differences in HPA axis responsivity; however, we suggest that neuroactive metabolites of these steroids also play a key role in the brain in mediating sex differences in HPA axis responses to stress. The relationship between neuroactive steroids and stress is complex. Acute stress rapidly increases neuroactive steroid production, which can in turn modulate activity of the HPA axis. However, under chronic stress conditions, stress can impact the brain's capacity to generate steroids, and this in turn has corollary effects on HPA axis function that may increase the propensity for psychopathology, given both HPA axis dysfunction and deficits in neuroactive steroids are implicated in affective disorders. Hence, here we review the evidence from animal and human studies for sex differences in the interactions between neuroactive steroids and the stress axis at various stages of life, under physiological and pathophysiological stress conditions and consider the implications for health and disease.

          Related collections

          Most cited references272

          • Record: found
          • Abstract: not found
          • Article: not found

          How Do Glucocorticoids Influence Stress Responses? Integrating Permissive, Suppressive, Stimulatory, and Preparative Actions

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sex differences in anxiety and depression clinical perspectives.

            Sex differences are prominent in mood and anxiety disorders and may provide a window into mechanisms of onset and maintenance of affective disturbances in both men and women. With the plethora of sex differences in brain structure, function, and stress responsivity, as well as differences in exposure to reproductive hormones, social expectations and experiences, the challenge is to understand which sex differences are relevant to affective illness. This review will focus on clinical aspects of sex differences in affective disorders including the emergence of sex differences across developmental stages and the impact of reproductive events. Biological, cultural, and experiential factors that may underlie sex differences in the phenomenology of mood and anxiety disorders are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of the Hypothalamic-Pituitary-Adrenocortical Stress Response.

              The hypothalamo-pituitary-adrenocortical (HPA) axis is required for stress adaptation. Activation of the HPA axis causes secretion of glucocorticoids, which act on multiple organ systems to redirect energy resources to meet real or anticipated demand. The HPA stress response is driven primarily by neural mechanisms, invoking corticotrophin releasing hormone (CRH) release from hypothalamic paraventricular nucleus (PVN) neurons. Pathways activating CRH release are stressor dependent: reactive responses to homeostatic disruption frequently involve direct noradrenergic or peptidergic drive of PVN neurons by sensory relays, whereas anticipatory responses use oligosynaptic pathways originating in upstream limbic structures. Anticipatory responses are driven largely by disinhibition, mediated by trans-synaptic silencing of tonic PVN inhibition via GABAergic neurons in the amygdala. Stress responses are inhibited by negative feedback mechanisms, whereby glucocorticoids act to diminish drive (brainstem) and promote transsynaptic inhibition by limbic structures (e.g., hippocampus). Glucocorticoids also act at the PVN to rapidly inhibit CRH neuronal activity via membrane glucocorticoid receptors. Chronic stress-induced activation of the HPA axis takes many forms (chronic basal hypersecretion, sensitized stress responses, and even adrenal exhaustion), with manifestation dependent upon factors such as stressor chronicity, intensity, frequency, and modality. Neural mechanisms driving chronic stress responses can be distinct from those controlling acute reactions, including recruitment of novel limbic, hypothalamic, and brainstem circuits. Importantly, an individual's response to acute or chronic stress is determined by numerous factors, including genetics, early life experience, environmental conditions, sex, and age. The context in which stressors occur will determine whether an individual's acute or chronic stress responses are adaptive or maladaptive (pathological).
                Bookmark

                Author and article information

                Journal
                European Journal of Neuroscience
                Eur J Neurosci
                Wiley
                0953-816X
                1460-9568
                July 2020
                December 16 2019
                July 2020
                : 52
                : 1
                : 2487-2515
                Affiliations
                [1 ]Centre for Discovery Brain Sciences University of Edinburgh Edinburgh UK
                [2 ]Zhejiang University‐University of Edinburgh Joint Institute Haining Zhejiang China
                Article
                10.1111/ejn.14615
                31705553
                4717510e-d179-4372-920e-07c59e2b08e8
                © 2020

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article