25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Hypothalamic Npy mRNA is correlated with increased wheel running and decreased body fat in calorie-restricted rats.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The neuro-molecular mechanisms that regulate the relationship between physical activity level, energy homeostasis regulation, and body fat are unclear. Thus, we aimed to investigate the relationship between mRNAs in the hypothalamic arcuate nucleus (ARC) related to energy homeostasis, wheel running distance, and body fat in ad lib (AL) and calorie-restricted (CR) growing rats. We hypothesized that changes in select mRNAs (Pomc, Cart, Agrp, Npy, Lepr, Insr, Mc4r, Ampk, Sirt1, Sirt3) in CR would be associated with decreases in body fat percentage and increased wheel running behavior. Male Wistar rats were given access to voluntary running wheels at 4 weeks of age and randomized into AL (n=8) and CR (70% of AL; n=7) groups at 5 weeks of age until study termination at 12 weeks of age. Body composition, serum leptin, insulin, and adiponectin, and ARC mRNA expression in AL and CR rats were assessed and correlated with week-12 running distance to examine potential relationships that may exist. By 12 weeks of age, wheel running was increased ∼3.3-fold (p=0.03) while body fat percentage was ∼2-fold lower in CR compared to AL (p=0.001). Compared to AL, ARC Npy mRNA expression was ∼2-fold greater in CR (p=0.02), while Lepr, Insr, Ampk, and Sirt1 mRNA were additionally increased in CR (p<0.05). Significant correlations existed between ARC Npy mRNA levels versus week-12 wheel running distance (r=0.81, p=0.03), body fat (r=-0.93, p<0.01), and between body fat and wheel running (r=-0.83, p=0.02) in CR, but not in AL. These results reveal possible mechanisms by which fat-brain crosstalk may influence physical activity during energy deficit. These data suggest that below a 'threshold' fat content, body fat may drive activity levels, potentially through hypothalamic Npy action.

          Related collections

          Author and article information

          Journal
          Neurosci. Lett.
          Neuroscience letters
          Elsevier BV
          1872-7972
          0304-3940
          Apr 08 2016
          : 618
          Affiliations
          [1 ] Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA.
          [2 ] Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA.
          [3 ] Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA. Electronic address: boothf@missouri.edu.
          Article
          S0304-3940(16)30103-3
          10.1016/j.neulet.2016.02.037
          26921453
          471acb64-728e-41cc-95b4-f90f9ef76961
          History

          Caloric restriction,Hypothalamus,Neuropeotide Y (Npy),Physical activity,Wheel running

          Comments

          Comment on this article