8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exposure of a single wild boar population in North Rhine-Westphalia (Germany) to perfluoroalkyl acids

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Perfluoroalkyl acids (PFAA) are among the leading chemical pollutants in the twenty-first century. Of these, perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) have been widely detected in a large number of animal and environmental samples. Wild boars accumulate PFAA in their livers, but it has not yet been clarified to what extent wild boars of the same population accumulate different PFAA in their livers or whether any conclusions can be drawn from any differences found in regard to environmental contamination. In this study, liver samples from wild boars killed during driven hunts in 2019 and 2020 from a defined forest area in North Rhine-Westfalia, Germany were analyzed for 13 different PFAA. A mean load of 493 µg/kg (± 168 µg/kg) PFAA was measured in 2020. Perfluorosulfonic acids accounted for 87% of the total load in both years, with PFOS dominating this group. These results were similar to those of 14 liver samples collected from other regions of Germany for comparison. In addition, the livers of hunted pregnant sows and fetuses were examined. The load of short-chain perfluorocarboxylic acids (< C8) in the fetus liver was as high as that of the sows, whereas the concentrations of long-chain perfluorocarboxylic acids (≥ C8) were lower than in the dams. This result shows for the first time that fetuses take up PFAA from their mothers in utero. Our study shows that PFAA content in wild boar livers is comparably high in all animals in a local population and indicates a need for further research regarding a nationwide background exposure to PFAA in wild boars and their surrounding environment.

          Supplementary Information

          The online version contains supplementary material available at 10.1007/s11356-022-23086-6.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Risk to human health related to the presence of perfluoroalkyl substances in food

          Abstract The European Commission asked EFSA for a scientific evaluation on the risks to human health related to the presence of perfluoroalkyl substances (PFASs) in food. Based on several similar effects in animals, toxicokinetics and observed concentrations in human blood, the CONTAM Panel decided to perform the assessment for the sum of four PFASs: PFOA, PFNA, PFHxS and PFOS. These made up half of the lower bound (LB) exposure to those PFASs with available occurrence data, the remaining contribution being primarily from PFASs with short half‐lives. Equal potencies were assumed for the four PFASs included in the assessment. The mean LB exposure in adolescents and adult age groups ranged from 3 to 22, the 95th percentile from 9 to 70 ng/kg body weight (bw) per week. Toddlers and ‘other children’ showed a twofold higher exposure. Upper bound exposure was 4‐ to 49‐fold higher than LB levels, but the latter were considered more reliable. ‘Fish meat’, ‘Fruit and fruit products’ and ‘Eggs and egg products’ contributed most to the exposure. Based on available studies in animals and humans, effects on the immune system were considered the most critical for the risk assessment. From a human study, a lowest BMDL 10 of 17.5 ng/mL for the sum of the four PFASs in serum was identified for 1‐year‐old children. Using PBPK modelling, this serum level of 17.5 ng/mL in children was estimated to correspond to long‐term maternal exposure of 0.63 ng/kg bw per day. Since accumulation over time is important, a tolerable weekly intake (TWI) of 4.4 ng/kg bw per week was established. This TWI also protects against other potential adverse effects observed in humans. Based on the estimated LB exposure, but also reported serum levels, the CONTAM Panel concluded that parts of the European population exceed this TWI, which is of concern.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            PFAS Exposure Pathways for Humans and Wildlife: A Synthesis of Current Knowledge and Key Gaps in Understanding

            We synthesize current understanding of the magnitudes and methods for assessing human and wildlife exposures to poly- and perfluoroalkyl substances (PFAS). Most human exposure assessments have focused on 2 to 5 legacy PFAS, and wildlife assessments are typically limited to targeted PFAS (up to ~30 substances). However, shifts in chemical production are occurring rapidly, and targeted methods for detecting PFAS have not kept pace with these changes. Total fluorine measurements complemented by suspect screening using high-resolution mass spectrometry are thus emerging as essential tools for PFAS exposure assessment. Such methods enable researchers to better understand contributions from precursor compounds that degrade into terminal perfluoroalkyl acids. Available data suggest that diet is the major human exposure pathway for some PFAS, but there is large variability across populations and PFAS compounds. Additional data on total fluorine in exposure media and the fraction of unidentified organofluorine are needed. Drinking water has been established as the major exposure source in contaminated communities. As water supplies are remediated, for the general population, exposures from dust, personal care products, indoor environments, and other sources may be more important. A major challenge for exposure assessments is the lack of statistically representative population surveys. For wildlife, bioaccumulation processes differ substantially between PFAS and neutral lipophilic organic compounds, prompting a reevaluation of traditional bioaccumulation metrics. There is evidence that both phospholipids and proteins are important for the tissue partitioning and accumulation of PFAS. New mechanistic models for PFAS bioaccumulation are being developed that will assist in wildlife risk evaluations. Environ Toxicol Chem 2021;40:631-657. © 2020 SETAC.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Accumulation of perfluoroalkyl substances in human tissues.

              Perfluoroalkyl substances (PFASs) are environmental pollutants with an important bioaccumulation potential. However, their metabolism and distribution in humans are not well studied. In this study, the concentrations of 21 PFASs were analyzed in 99 samples of autopsy tissues (brain, liver, lung, bone, and kidney) from subjects who had been living in Tarragona (Catalonia, Spain). The samples were analyzed by solvent extraction and online purification by turbulent flow and liquid chromatography coupled to tandem mass spectrometry. The occurrence of PFASs was confirmed in all human tissues. Although PFASs accumulation followed particular trends depending on the specific tissue, some similarities were found. In kidney and lung, perfluorobutanoic acid was the most frequent compound, and at highest concentrations (median values: 263 and 807ng/g in kidney and lung, respectively). In liver and brain, perfluorohexanoic acid showed the maximum levels (median: 68.3 and 141ng/g, respectively), while perfluorooctanoic acid was the most contributively in bone (median: 20.9ng/g). Lung tissues accumulated the highest concentration of PFASs. However, perfluorooctane sulfonic acid and perfluorooctanoic acid were more prevalent in liver and bone, respectively. To the best of our knowledge, the accumulation of different PFASs in samples of various human tissues from the same subjects is here reported for the very first time. The current results may be of high importance for the validation of physiologically based pharmacokinetic models, which are being developed for humans. However, further studies on the distribution of the same compounds in the human body are still required.
                Bookmark

                Author and article information

                Contributors
                harald.faerber@ukbonn.de
                Journal
                Environ Sci Pollut Res Int
                Environ Sci Pollut Res Int
                Environmental Science and Pollution Research International
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                0944-1344
                1614-7499
                28 September 2022
                28 September 2022
                2023
                : 30
                : 6
                : 15575-15584
                Affiliations
                [1 ]GRID grid.10388.32, ISNI 0000 0001 2240 3300, Institute for Hygiene and Public Health, University Hospital Bonn, Medical Faculty, , University of Bonn, ; Building 63, Venusberg-Campus 1, 53127 Bonn, Germany
                [2 ]GRID grid.10388.32, ISNI 0000 0001 2240 3300, Institute of Animal Science, , University of Bonn, ; Katzenburgweg 7-9, 53115 Bonn, Germany
                Author notes

                Responsible Editor: Roland Peter Kallenborn

                Author information
                http://orcid.org/0000-0002-8663-1553
                Article
                23086
                10.1007/s11356-022-23086-6
                9908673
                36169825
                471f4c23-8c9e-428b-9d20-f0aed0e9a1a6
                © The Author(s) 2022

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 14 January 2022
                : 14 September 2022
                Funding
                Funded by: Rheinische Friedrich-Wilhelms-Universität Bonn (1040)
                Categories
                Research Article
                Custom metadata
                © Springer-Verlag GmbH Germany, part of Springer Nature 2023

                General environmental science
                pfaa,pfas,liver,wild boar,environmental pollution,poly- and perfluorinated substances,risk assessment

                Comments

                Comment on this article