10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Decreased demands on cognitive control reveal the neural processing benefits of forgetting

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Remembering often requires the selection of goal-relevant memories in the face of competition from irrelevant memories. Although there is a cost of selecting target memories over competing memories (increased forgetting of the competing memories), here we report neural evidence for the adaptive benefits of forgetting--namely, reduced demands on cognitive control during future acts of remembering. Functional magnetic resonance imaging during selective retrieval showed that repeated retrieval of target memories was accompanied by dynamic reductions in the engagement of functionally coupled cognitive control mechanisms that detect (anterior cingulate cortex) and resolve (dorsolateral and ventrolateral prefrontal cortex) mnemonic competition. Strikingly, regression analyses revealed that this prefrontal disengagement tracked the extent to which competing memories were forgotten; greater forgetting of competing memories was associated with a greater decline in demands on prefrontal cortex during target remembering. These findings indicate that, although forgetting can be frustrating, memory might be adaptive because forgetting confers neural processing benefits.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Anterior cingulate conflict monitoring and adjustments in control.

          Conflict monitoring by the anterior cingulate cortex (ACC) has been posited to signal a need for greater cognitive control, producing neural and behavioral adjustments. However, the very occurrence of behavioral adjustments after conflict has been questioned, along with suggestions that there is no direct evidence of ACC conflict-related activity predicting subsequent neural or behavioral adjustments in control. Using the Stroop color-naming task and controlling for repetition effects, we demonstrate that ACC conflict-related activity predicts both greater prefrontal cortex activity and adjustments in behavior, supporting a role of ACC conflict monitoring in the engagement of cognitive control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The medial temporal lobe.

            The medial temporal lobe includes a system of anatomically related structures that are essential for declarative memory (conscious memory for facts and events). The system consists of the hippocampal region (CA fields, dentate gyrus, and subicular complex) and the adjacent perirhinal, entorhinal, and parahippocampal cortices. Here, we review findings from humans, monkeys, and rodents that illuminate the function of these structures. Our analysis draws on studies of human memory impairment and animal models of memory impairment, as well as neurophysiological and neuroimaging data, to show that this system (a) is principally concerned with memory, (b) operates with neocortex to establish and maintain long-term memory, and (c) ultimately, through a process of consolidation, becomes independent of long-term memory, though questions remain about the role of perirhinal and parahippocampal cortices in this process and about spatial memory in rodents. Data from neurophysiology, neuroimaging, and neuroanatomy point to a division of labor within the medial temporal lobe. However, the available data do not support simple dichotomies between the functions of the hippocampus and the adjacent medial temporal cortex, such as associative versus nonassociative memory, episodic versus semantic memory, and recollection versus familiarity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Test-enhanced learning: taking memory tests improves long-term retention.

              Taking a memory test not only assesses what one knows, but also enhances later retention, a phenomenon known as the testing effect. We studied this effect with educationally relevant materials and investigated whether testing facilitates learning only because tests offer an opportunity to restudy material. In two experiments, students studied prose passages and took one or three immediate free-recall tests, without feedback, or restudied the material the same number of times as the students who received tests. Students then took a final retention test 5 min, 2 days, or 1 week later. When the final test was given after 5 min, repeated studying improved recall relative to repeated testing. However, on the delayed tests, prior testing produced substantially greater retention than studying, even though repeated studying increased students' confidence in their ability to remember the material. Testing is a powerful means of improving learning, not just assessing it.
                Bookmark

                Author and article information

                Journal
                Nature Neuroscience
                Nat Neurosci
                Springer Science and Business Media LLC
                1097-6256
                1546-1726
                July 2007
                June 3 2007
                July 2007
                : 10
                : 7
                : 908-914
                Article
                10.1038/nn1918
                17558403
                4722095f-c2c0-4486-8bd3-7af34c7313b5
                © 2007

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article