44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Defense-Related Responses in Fruit of the Nonhost Chili Pepper against Xanthomonas axonopodis pv. glycines Infection

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Xanthomonas axonopodis pv. glycines ( Xag ) is a necrotrophic bacterial pathogen of the soybean that causes bacterial pustules and is a nonhost pathogen of the chili pepper. In the current study, chili pepper fruit wound inoculated in planta with Xag 8ra formed necrotic lesions on the fruit surface and induced several structural and chemical barriers systemically in the fruit tissue. The initial defense response included programmed cell death of necrotizing and necrotized cells, which was characterized by nuclear DNA cleavage, as detected by TUNEL-confocal laser scanning microscopy (CLSM), and phosphatidylserine exposure on cell walls distal to the infection site, as detected by Annexin V FLUOS-CLSM. These two responses may facilitate cell killing and enhance transportation of cell wall materials used for cell wall thickening, respectively. The cells beneath the necrotic tissue were enlarged and divided to form periclinal cell walls, resulting in extensive formation of several parallel boundary layers at the later stages of infection, accompanying the deposition of wall fortification materials for strengthening structural defenses. These results suggest that nonhost resistance of chili pepper fruit against the nonhost necrotrophic pathogen Xag 8ra is activated systematically from the initial infection until termination of the infection cycle, resulting in complete inhibition of bacterial pathogenesis by utilizing organ-specific in situ physiological events governed by the expression of genes in the plant fruit organ.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Sugar transporters for intercellular exchange and nutrition of pathogens.

          Sugar efflux transporters are essential for the maintenance of animal blood glucose levels, plant nectar production, and plant seed and pollen development. Despite broad biological importance, the identity of sugar efflux transporters has remained elusive. Using optical glucose sensors, we identified a new class of sugar transporters, named SWEETs, and show that at least six out of seventeen Arabidopsis, two out of over twenty rice and two out of seven homologues in Caenorhabditis elegans, and the single copy human protein, mediate glucose transport. Arabidopsis SWEET8 is essential for pollen viability, and the rice homologues SWEET11 and SWEET14 are specifically exploited by bacterial pathogens for virulence by means of direct binding of a bacterial effector to the SWEET promoter. Bacterial symbionts and fungal and bacterial pathogens induce the expression of different SWEET genes, indicating that the sugar efflux function of SWEET transporters is probably targeted by pathogens and symbionts for nutritional gain. The metazoan homologues may be involved in sugar efflux from intestinal, liver, epididymis and mammary cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure.

            Apoptosis is a programmed, physiological mode of cell death that plays an important role in tissue homeostasis. Understanding of the basic mechanisms that underlie apoptosis will point to potentially new targets of therapeutic treatment of diseases that show an imbalance between cell proliferation and cell loss. In order to conduct such research, techniques and tools to reliably identify and enumerate death by apoptosis are essential. This review focuses on a novel technique to detect apoptosis by targeting for the loss of phospholipid asymmetry of the plasma membrane. It was recently shown that loss of plasma membrane asymmetry is an early event in apoptosis, independent of the cell type, resulting in the exposure of phosphatidylserine (PS) residues at the outer plasma membrane leaflet. Annexin V was shown to interact strongly and specifically with PS and can be used to detect apoptosis by targeting for the loss of plasma membrane asymmetry. Labeled annexin V can be applied both in flow cytometry and in light microscopy in both vital and fixed material by using appropriate protocols. The annexin V method is an extension to the current available methods. This review describes the basic mechanisms underlying the loss of membrane asymmetry during apoptosis and discusses the novel annexin V-binding assay.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A low-viscosity epoxy resin embedding medium for electron microscopy.

              A R Spurr (1969)
                Bookmark

                Author and article information

                Journal
                Plant Pathol J
                Plant Pathol. J
                The Plant Pathology Journal
                Korean Society of Plant Pathology
                1598-2254
                2093-9280
                August 2016
                01 August 2016
                : 32
                : 4
                : 311-320
                Affiliations
                [1 ]Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
                [2 ]Animal and Plant Quarantine Agency, Anyang 14089, Korea
                [3 ]Department of Bioresource Sciences, Andong National University, Andong 36729, Korea
                Author notes
                [* ]Corresponding author: Phone) +82-2-880-4675, FAX) +82-2-873-2317, E-mail) yhokim@ 123456snu.ac.kr
                Article
                ppj-32-311
                10.5423/PPJ.OA.12.2015.0256
                4968641
                27493606
                473b0f2a-51d9-4cca-9fca-d15619e3c0e5
                © The Korean Society of Plant Pathology

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 08 December 2015
                : 25 January 2016
                : 24 February 2016
                Categories
                Research Article

                chili pepper,hypersensitive response,programmed cell death,xanthomonas axonopodis pv. glycines

                Comments

                Comment on this article