5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Long Noncoding RNA LINC01619 Regulates MicroRNA-27a/Forkhead Box Protein O1 and Endoplasmic Reticulum Stress-Mediated Podocyte Injury in Diabetic Nephropathy

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Altered activities of long noncoding RNAs (lncRNAs) have been implicated in the regulation of microRNAs. microRNA-27a (miR-27a) upregulation has been shown to induce endoplasmic reticulum (ER) stress podocyte injury in diabetic nephropathy (DN). Herein, we aim to interrogate the mutually regulated network of miR-27a with long intergenic noncoding RNA 1619 (LINC01619) and the target gene.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Podocyte injury and its consequences.

          Podocytes maintain the glomerular filtration barrier, and the stability of this barrier depends on their highly differentiated postmitotic phenotype, which also defines the particular vulnerability of the glomerulus. Recent podocyte biology and gene disruption studies in vivo indicate a causal relationship between abnormalities of single podocyte molecules and proteinuria and glomerulosclerosis. Podocytes live under various stresses and pathological stimuli. They adapt to maintain homeostasis, but excessive stress leads to maladaptation with complex biological changes including loss of integrity and dysregulation of cellular metabolism. Podocyte injury causes proteinuria and detachment from the glomerular basement membrane. In addition to "sick" podocytes and their detachment, our understanding of glomerular responses following podocyte loss needs to address the pathways from podocyte injury to sclerosis. Studies have found a variety of glomerular responses to podocyte dysfunction in vivo, such as disruption of podocyte-endothelial cross talk and activation of podocyte-parietal cell interactions, all of which help us to understand the complex scenario of podocyte injury and its consequences. This review focuses on the cellular aspects of podocyte dysfunction and the adaptive or maladaptive glomerular responses to podocyte injury that lead to its major consequence, glomerulosclerosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TGF-β activates Akt kinase via a microRNA-dependent amplifying circuit targeting PTEN

            Akt kinase is activated by transforming growth factor-beta1 (TGF-β) in diabetic kidneys and plays important roles in fibrosis, hypertrophy and cell survival in glomerular mesangial cells (MC)1–11. However, the mechanisms of Akt activation by TGF-β are not fully understood. Here we show that TGF-β activates Akt in MC by inducing microRNA-216a (miR-216a) and miR-217, both of which target phosphatase and tensin homologue (PTEN). Both these miRs are located within the second intron of a non-coding RNA (RP23-298H6.1-001). The RP23 promoter was activated by TGF-β and also by miR-192 via E-box-regulated mechanisms as shown previously3. Akt activation by these miRs also led to MC survival and hypertrophy similar to TGF-β. These studies reveal a mechanism of Akt activation via PTEN downregulation by two miRs regulated by upstream miR-192 and TGF-β. Due to the diversity of PTEN function12, 13, this miR amplifying circuit may play key roles not only in kidney disorders, but also other diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Long non-coding RNA MALAT1 regulates hyperglycaemia induced inflammatory process in the endothelial cells

              To examine whether the long non-coding RNA (lncRNA) metastasis associated lung adenocarcinoma transcript 1 (MALAT1) is altered in the endothelial cells in response to glucose and the significance of such alteration. We incubated human umbilical vein endothelial cells with media containing various glucose levels. We found an increase in MALAT1 expression peaking after 12 hrs of incubation in high glucose. This increase was associated with parallel increase in serum amyloid antigen 3 (SAA3), an inflammatory ligand and target of MALAT1 and was further accompanied by increase in mRNAs and proteins of inflammatory mediators, tumour necrosis factor alpha (TNF-α) and interleukin 6 (IL-6). Renal tissue from the diabetic animals showed similar changes. Such cellular alterations were prevented following MALAT1 specific siRNA transfection. Results of this study indicate that LncRNA MALAT1 regulates glucose-induced up-regulation of inflammatory mediators IL-6 and TNF-α through activation of SAA3. Identification of such novel mechanism may lead to the development of RNA-based therapeutics targeting MALAT1 for diabetes-induced micro and macro vascular complications.
                Bookmark

                Author and article information

                Journal
                Antioxidants & Redox Signaling
                Antioxidants & Redox Signaling
                Mary Ann Liebert Inc
                1523-0864
                1557-7716
                August 2018
                August 2018
                : 29
                : 4
                : 355-376
                Affiliations
                [1 ]Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China.
                [2 ]Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China.
                [3 ]Department of Emergency, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China.
                [4 ]Department of Pathology, King Medical Diagnostics Center, Guangzhou, People's Republic of China.
                Article
                10.1089/ars.2017.7278
                29334763
                474a58f4-70be-4304-897f-c70b0e0326b3
                © 2018

                http://www.liebertpub.com/nv/resources-tools/text-and-data-mining-policy/121/

                History

                Comments

                Comment on this article