15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Acute Chest Syndrome in Children with Sickle Cell Disease

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Acute chest syndrome (ACS) is a frequent cause of acute lung disease in children with sickle cell disease (SCD). Patients may present with ACS or may develop this complication during the course of a hospitalization for acute vaso-occlusive crises (VOC). ACS is associated with prolonged hospitalization, increased risk of respiratory failure, and the potential for developing chronic lung disease. ACS in SCD is defined as the presence of fever and/or new respiratory symptoms accompanied by the presence of a new pulmonary infiltrate on chest X-ray. The spectrum of clinical manifestations can range from mild respiratory illness to acute respiratory distress syndrome. The presence of severe hypoxemia is a useful predictor of severity and outcome. The etiology of ACS is often multifactorial. One of the proposed mechanisms involves increased adhesion of sickle red cells to pulmonary microvasculature in the presence of hypoxia. Other commonly associated etiologies include infection, pulmonary fat embolism, and infarction. Infection is a common cause in children, whereas adults usually present with pain crises. Several risk factors have been identified in children to be associated with increased incidence of ACS. These include younger age, severe SCD genotypes (SS or Sβ 0 thalassemia), lower fetal hemoglobin concentrations, higher steady-state hemoglobin levels, higher steady-state white blood cell counts, history of asthma, and tobacco smoke exposure. Opiate overdose and resulting hypoventilation can also trigger ACS. Prompt diagnosis and management with intravenous fluids, analgesics, aggressive incentive spirometry, supplemental oxygen or respiratory support, antibiotics, and transfusion therapy, are key to the prevention of clinical deterioration. Bronchodilators should be considered if there is history of asthma or in the presence of acute bronchospasm. Treatment with hydroxyurea should be considered for prevention of recurrent episodes. This review evaluates the etiology, pathophysiology, risk factors, clinical presentation of ACS, and preventive and treatment strategies for effective management of ACS.

          Related collections

          Most cited references122

          • Record: found
          • Abstract: found
          • Article: not found

          Causes and outcomes of the acute chest syndrome in sickle cell disease. National Acute Chest Syndrome Study Group.

          The acute chest syndrome is the leading cause of death among patients with sickle cell disease. Since its cause is largely unknown, therapy is supportive. Pilot studies with improved diagnostic techniques suggest that infection and fat embolism are underdiagnosed in patients with the syndrome. In a 30-center study, we analyzed 671 episodes of the acute chest syndrome in 538 patients with sickle cell disease to determine the cause, outcome, and response to therapy. We evaluated a treatment protocol that included matched transfusions, bronchodilators, and bronchoscopy. Samples of blood and respiratory tract secretions were sent to central laboratories for antibody testing, culture, DNA testing, and histopathological analyses. Nearly half the patients were initially admitted for another reason, mainly pain. When the acute chest syndrome was diagnosed, patients had hypoxia, decreasing hemoglobin values, and progressive multilobar pneumonia. The mean length of hospitalization was 10.5 days. Thirteen percent of patients required mechanical ventilation, and 3 percent died. Patients who were 20 or more years of age had a more severe course than those who were younger. Neurologic events occurred in 11 percent of patients, among whom 46 percent had respiratory failure. Treatment with phenotypically matched transfusions improved oxygenation, with a 1 percent rate of alloimmunization. One fifth of the patients who were treated with bronchodilators had clinical improvement. Eighty-one percent of patients who required mechanical ventilation recovered. A specific cause of the acute chest syndrome was identified in 38 percent of all episodes and 70 percent of episodes with complete data. Among the specific causes were pulmonary fat embolism and 27 different infectious pathogens. Eighteen patients died, and the most common causes of death were pulmonary emboli and infectious bronchopneumonia. Infection was a contributing factor in 56 percent of the deaths. Among patients with sickle cell disease, the acute chest syndrome is commonly precipitated by fat embolism and infection, especially community-acquired pneumonia. Among older patients and those with neurologic symptoms, the syndrome often progresses to respiratory failure. Treatment with transfusions and bronchodilators improves oxygenation, and with aggressive treatment, most patients who have respiratory failure recover.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pulmonary hypertension as a risk factor for death in patients with sickle cell disease.

            The prevalence of pulmonary hypertension in adults with sickle cell disease, the mechanism of its development, and its prospective prognostic significance are unknown. We performed Doppler echocardiographic assessments of pulmonary-artery systolic pressure in 195 consecutive patients (82 men and 113 women; mean [+/-SD] age, 36+/-12 years). Pulmonary hypertension was prospectively defined as a tricuspid regurgitant jet velocity of at least 2.5 m per second. Patients were followed for a mean of 18 months, and data were censored at the time of death or loss to follow-up. Doppler-defined pulmonary hypertension occurred in 32 percent of patients. Multiple logistic-regression analysis, with the use of the dichotomous variable of a tricuspid regurgitant jet velocity of less than 2.5 m per second or 2.5 m per second or more, identified a self-reported history of cardiovascular or renal complications, increased systolic blood pressure, high lactate dehydrogenase levels (a marker of hemolysis), high levels of alkaline phosphatase, and low transferrin levels as significant independent correlates of pulmonary hypertension. The fetal hemoglobin level, white-cell count, and platelet count and the use of hydroxyurea therapy were unrelated to pulmonary hypertension. A tricuspid regurgitant jet velocity of at least 2.5 m per second, as compared with a velocity of less than 2.5 m per second, was strongly associated with an increased risk of death (rate ratio, 10.1; 95 percent confidence interval, 2.2 to 47.0; P<0.001) and remained so after adjustment for other possible risk factors in a proportional-hazards regression model. Pulmonary hypertension, diagnosed by Doppler echocardiography, is common in adults with sickle cell disease. It appears to be a complication of chronic hemolysis, is resistant to hydroxyurea therapy, and confers a high risk of death. Therapeutic trials targeting this population of patients are indicated. Copyright 2004 Massachusetts Medical Society
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              How I use hydroxyurea to treat young patients with sickle cell anemia.

              Hydroxyurea has many characteristics of an ideal drug for sickle cell anemia (SCA) and provides therapeutic benefit through multiple mechanisms of action. Over the past 25 years, substantial experience has accumulated regarding its safety and efficacy for patients with SCA. Early proof-of-principle studies were followed by prospective phase 1/2 trials demonstrating efficacy in affected adults, then adolescents and children, and more recently infants and toddlers. The phase 3 National Heart, Lung and Blood Institute-sponsored Multicenter Study of Hydroxyurea trial proved clinical efficacy for preventing acute vaso-occlusive events in severely affected adults. Based on this cumulative experience, hydroxyurea has emerged as an important therapeutic option for children and adolescents with recurrent vaso-occlusive events; recent evidence documents sustained long-term benefits with prevention or reversal of chronic organ damage. Despite abundant evidence for its efficacy, however, hydroxyurea has not yet translated into effective therapy for SCA. Because many healthcare providers have inadequate knowledge about hydroxyurea, patients and families are not offered treatment or decline because of unrealistic fears. Limited support for hydroxyurea by lay organizations and inconsistent medical delivery systems also contribute to underuse. Although questions remain regarding its long-term risks and benefits, current evidence suggests that many young patients with SCA should receive hydroxyurea treatment.
                Bookmark

                Author and article information

                Journal
                Pediatr Allergy Immunol Pulmonol
                Pediatr Allergy Immunol Pulmonol
                ped
                Pediatric Allergy, Immunology, and Pulmonology
                Mary Ann Liebert, Inc. (140 Huguenot Street, 3rd FloorNew Rochelle, NY 10801USA )
                2151-321X
                2151-3228
                01 December 2017
                01 December 2017
                01 December 2017
                : 30
                : 4
                : 191-201
                Affiliations
                [ 1 ]Department of Pediatrics, Division of Pediatric Hematology–Oncology, Women and Children's Hospital of Buffalo, Hemophilia Center of Western New York , Buffalo, New York.
                [ 2 ]Department of Pediatrics, Division of Pediatric Hematology–Oncology, Aflac Cancer and Blood Disorders Center , Children's Healthcare of Atlanta, Atlanta, Georgia.
                Author notes
                Address correspondence to: Shilpa Jain, MD, MPH, Department of Pediatrics Division of Pediatric Hematology-Oncology, Women and Children's Hospital of Buffalo, Hemophilia Center of Western New York Buffalo, NY 14209, E-mail: sjain@ 123456upa.chob.edu
                Article
                10.1089/ped.2017.0814
                10.1089/ped.2017.0814
                5733742
                29279787
                475f4b9b-63d9-415c-9872-5383182790fc
                © Shilpa Jain et al. 2017; Published by Mary Ann Liebert, Inc.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 01 August 2017
                : 11 October 2017
                Page count
                Figures: 2, Tables: 2, References: 135, Pages: 11
                Categories
                Review

                acute chest syndrome,sickle cell disease,children,pulmonary

                Comments

                Comment on this article