171
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Stool substitute transplant therapy for the eradication of Clostridium difficile infection: ‘RePOOPulating’ the gut

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Fecal bacteriotherapy (‘stool transplant’) can be effective in treating recurrent Clostridium difficile infection, but concerns of donor infection transmission and patient acceptance limit its use. Here we describe the use of a stool substitute preparation, made from purified intestinal bacterial cultures derived from a single healthy donor, to treat recurrent C. difficile infection that had failed repeated standard antibiotics. Thirty-three isolates were recovered from a healthy donor stool sample. Two patients who had failed at least three courses of metronidazole or vancomycin underwent colonoscopy and the mixture was infused throughout the right and mid colon. Pre-treatment and post-treatment stool samples were analyzed by 16 S rRNA gene sequencing using the Ion Torrent platform.

          Results

          Both patients were infected with the hyper virulent C. difficile strain, ribotype 078. Following stool substitute treatment, each patient reverted to their normal bowel pattern within 2 to 3 days and remained symptom-free at 6 months. The analysis demonstrated that rRNA sequences found in the stool substitute were rare in the pre-treatment stool samples but constituted over 25% of the sequences up to 6 months after treatment.

          Conclusion

          This proof-of-principle study demonstrates that a stool substitute mixture comprising a multi-species community of bacteria is capable of curing antibiotic-resistant C. difficile colitis. This benefit correlates with major changes in stool microbial profile and these changes reflect isolates from the synthetic mixture.

          Trial registration

          Clinical trial registration number: CinicalTrials.gov NCT01372943

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection.

          Clostridium difficile infection (CDI) is a gastrointestinal disease believed to be causally related to perturbations to the intestinal microbiota. When standard treatment has failed, intestinal microbiota transplantation (IMT) is an alternative therapy for patients with CDI. IMT involves infusing intestinal microorganisms (in a suspension of healthy donor stool) into the intestine of a sick patient to restore the microbiota. However, protocols and reported efficacy for IMT vary. We conducted a systematic literature review of IMT treatment for recurrent CDI and pseudomembranous colitis. In 317 patients treated across 27 case series and reports, IMT was highly effective, showing disease resolution in 92% of cases. Effectiveness varied by route of instillation, relationship to stool donor, volume of IMT given, and treatment before infusion. Death and adverse events were uncommon. These findings can guide physicians interested in implementing the procedure until better designed studies are conducted to confirm best practices.
            • Record: found
            • Abstract: found
            • Article: not found

            NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes

            Microbiologists conducting surveys of bacterial and archaeal diversity often require comparative alignments of thousands of 16S rRNA genes collected from a sample. The computational resources and bioinformatics expertise required to construct such an alignment has inhibited high-throughput analysis. It was hypothesized that an online tool could be developed to efficiently align thousands of 16S rRNA genes via the NAST (Nearest Alignment Space Termination) algorithm for creating multiple sequence alignments (MSA). The tool was implemented with a web-interface at . Each user-submitted sequence is compared with Greengenes' ‘Core Set’, comprising ∼10 000 aligned non-chimeric sequences representative of the currently recognized diversity among bacteria and archaea. User sequences are oriented and paired with their closest match in the Core Set to serve as a template for inserting gap characters. Non-16S data (sequence from vector or surrounding genomic regions) are conveniently removed in the returned alignment. From the resulting MSA, distance matrices can be calculated for diversity estimates and organisms can be classified by taxonomy. The ability to align and categorize large sequence sets using a simple interface has enabled researchers with various experience levels to obtain bacterial and archaeal community profiles.
              • Record: found
              • Abstract: found
              • Article: not found

              Changes in the composition of the human fecal microbiome after bacteriotherapy for recurrent Clostridium difficile-associated diarrhea.

              Clostridium difficile-associated disease (CDAD) is the major known cause of antibiotic-induced diarrhea and colitis, and the disease is thought to result from persistent disruption of commensal gut microbiota. Bacteriotherapy by way of fecal transplantation can be used to treat recurrent CDAD, which is thought to reestablish the normal colonic microflora. However, limitations of conventional microbiologic techniques have, until recently, precluded testing of this idea. In this study, we used terminal-restriction fragment length polymorphism and 16S rRNA gene sequencing approaches to characterize the bacterial composition of the colonic microflora in a patient suffering from recurrent CDAD before and after treatment by fecal transplantation from a healthy donor. Although the patient's residual colonic microbiota, prior to therapy was deficient in members of the bacterial divisions-Firmicutes and Bacteriodetes, transplantation had a dramatic impact on the composition of the patient's gut microbiota. By 14 days posttransplantation, the fecal bacterial composition of the recipient was highly similar to that of the donor and was dominated by Bacteroides spp. strains and an uncharacterized butyrate producing bacterium. The change in bacterial composition was accompanied by resolution of the patient's symptoms. The striking similarity of the recipient's and donor's intestinal microbiota following after bacteriotherapy suggests that the donor's bacteria quickly occupied their requisite niches resulting in restoration of both the structure and function of the microbial communities present.

                Author and article information

                Contributors
                Journal
                Microbiome
                Microbiome
                Microbiome
                BioMed Central
                2049-2618
                2013
                9 January 2013
                : 1
                : 3
                Affiliations
                [1 ]Department of Medicine, GIDRU Wing, Kingston General Hospital, Queen’s University, 76 Stuart Street, Kingston, ON, K7L 2V7, Canada
                [2 ]Department of Biochemistry, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 3K7, Canada
                [3 ]Department of Pathobiology, University of Guelph, Guelph, 50 Stone Road East, ON, N1G 2W1, Canada
                [4 ]London Regional Genomics Centre, Robarts Research Institute, 100 Perth Drive, London, ON, N6A 5K8, Canada
                [5 ]Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
                Article
                2049-2618-1-3
                10.1186/2049-2618-1-3
                3869191
                24467987
                47628af1-63dc-42bd-a089-ca5d1ae8b516
                Copyright © 2013 Petrof et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 20 March 2012
                : 18 July 2012
                Categories
                Methodology

                clostridium difficile,fecal bacteriotherapy,probiotics,gut microbiome

                Comments

                Comment on this article

                Related Documents Log