1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Celiac Disease and Autoimmunity — The Missing Ingredient

      New England Journal of Medicine
      New England Journal of Medicine (NEJM/MMS)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references4

          • Record: found
          • Abstract: found
          • Article: not found

          Reovirus infection triggers inflammatory responses to dietary antigens and development of celiac disease

          Viral infections have been proposed to elicit pathological processes leading to the initiation of T helper 1 (T H 1) immunity against dietary gluten and celiac disease (CeD). To test this hypothesis and gain insights into mechanisms underlying virus-induced loss of tolerance to dietary antigens, we developed a viral infection model that makes use of two reovirus strains that infect the intestine but differ in their immunopathological outcomes. Reovirus is an avirulent pathogen that elicits protective immunity, but we discovered that it can nonetheless disrupt intestinal immune homeostasis at inductive and effector sites of oral tolerance by suppressing peripheral regulatory T cell (pT reg ) conversion and promoting T H 1 immunity to dietary antigen. Initiation of T H 1 immunity to dietary antigen was dependent on interferon regulatory factor 1 and dissociated from suppression of pT reg conversion, which was mediated by type-1 interferon. Last, our study in humans supports a role for infection with reovirus, a seemingly innocuous virus, in triggering the development of CeD.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Novel players in coeliac disease pathogenesis: role of the gut microbiota.

            Several studies point towards alteration in gut microbiota composition and function in coeliac disease, some of which can precede the onset of disease and/or persist when patients are on a gluten-free diet. Evidence also exists that the gut microbiota might promote or reduce coeliac-disease-associated immunopathology. However, additional studies are required in humans and in mice (using gnotobiotic technology) to determine cause-effect relationships and to identify agents for modulating the gut microbiota as a therapeutic or preventative approach for coeliac disease. In this Review, we summarize the current evidence for altered gut microbiota composition in coeliac disease and discuss how the interplay between host genetics, environmental factors and the intestinal microbiota might contribute to its pathogenesis. Moreover, we highlight the importance of utilizing animal models and long-term clinical studies to gain insight into the mechanisms through which host-microbial interactions can influence host responses to gluten.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An update of the HLA genomic region, locus information and disease associations: 2004.

              The human major histocompatibility (MHC) genomic region at chromosomal position 6p21 encodes the six classical transplantation HLA genes and many other genes that have important roles in the regulation of the immune system as well as in some fundamental cellular processes. This small segment of the human genome has been associated with more than 100 diseases, including common diseases--such as diabetes, rheumatoid arthritis, psoriasis, asthma and various autoimmune disorders. The MHC 3.6 Mb genomic sequence was first reported in 1999 with the annotation of 224 gene loci. The locus and allelic information of the MHC continue to be updated by identifying newly mapped expressed genes and pseudogenes based on comparative genomics, SNP analysis and cDNA projects. Since 1999, new innovations in bioinformatics and gene-specific functional databases and studies on the MHC genes have resulted in numerous changes to gene names and better ways to update and link the MHC gene symbols, names and sequences together with function, variation and disease associations. In this study, we present a brief overview of the MHC genomic structure and the recent information that we have gathered on the MHC gene loci via LocusLink at the National Centre for Biological Information (http://www.ncbi.nih.gov/.) and the MHC genes' association with various diseases taken from publications and records in public databases, such as the Online Mendelian Inheritance in Man and the Genetic Association Database.
                Bookmark

                Author and article information

                Journal
                New England Journal of Medicine
                N Engl J Med
                New England Journal of Medicine (NEJM/MMS)
                0028-4793
                1533-4406
                October 12 2017
                October 12 2017
                : 377
                : 15
                : 1489-1490
                Article
                10.1056/NEJMcibr1706917
                477e6dec-ea58-40e7-a30c-de3de7c0e398
                © 2017
                History

                Comments

                Comment on this article