2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluation with endothelial nitric oxide synthase (eNOS) immunoreactivity of the protective role of astaxanthin on hepatorenal injury of remote organs caused by ischaemia reperfusion of the lower extremities

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Ischemia and following reperfusion triggers local and systemic damage with the involvement of free oxygen radicals and inflammatory mediators. Although blood flow saves extremity from necrosis,multi organ dysfunction may progress and cause death of the patient.

          Aim

          The study aims to examine the effect of astaxanthin (AST) on the prevention of remote tissue injury resulting from lower extremity ischaemia–reperfusion (I/R). To elucidate the potential hepatoprotective and renoprotective effects of AST, in addition to histopathological findings, the intrahepatic and intrarenal kinetics of endothelial nitric oxide synthase (eNOS) during I/R were determined by using the immunohistochemical method.

          Material and methods

          Twenty-eight male Wistar albino rats were divided into four groups. For the control group, only the anaesthesia procedure (2 h) was conducted without I/R. In the I/R group, 2 h of reperfusion was conducted following ischaemia under anaesthesia. For the I/R group + AST, 7 days prior to ischaemia, 125 mg/kg AST was given with gavage, and 2 h of ischaemia and 2 h of reperfusion were conducted under anaesthesia. Following necropsy, liver and kidney tissue samples were fixed in 10% buffered formalin for 48 h for histopathological and immunohistochemical investigation.

          Results

          The histological analysis revealed that severe I/R hepatorenal injury such as inflammatory cell infiltration, dilatation in sinusoids and lumen of tubuli, congestion in glomerular capillaries, degeneration in hepatocyte and epithelial cells of tubuli, and necrosis was ameliorated by AST. Immunohistochemical studies showed that the I/R-induced elevation in eNOS expression was reduced by AST treatment.

          Conclusions

          In the case of acute lower extremity I/R, AST decreased the ischaemic injury in liver and renal tissues by protecting the microcirculation and providing a cytoprotective effect with vasodilatation.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Pathophysiology of ischaemia-reperfusion injury.

          Reperfusion of ischaemic tissues is often associated with microvascular dysfunction that is manifested as impaired endothelium-dependent dilation in arterioles, enhanced fluid filtration and leukocyte plugging in capillaries, and the trafficking of leukocytes and plasma protein extravasation in postcapillary venules. Activated endothelial cells in all segments of the microcirculation produce more oxygen radicals, but less nitric oxide, in the initial period following reperfusion. The resulting imbalance between superoxide and nitric oxide in endothelial cells leads to the production and release of inflammatory mediators (e.g. platelet-activating factor, tumour necrosis factor) and enhances the biosynthesis of adhesion molecules that mediate leukocyte-endothelial cell adhesion. Some of the known risk factors for cardiovascular disease (hypercholesterolaemia, hypertension, and diabetes) appear to exaggerate many of the microvascular alterations elicited by ischaemia and reperfusion (I/R). The inflammatory mediators released as a consequence of reperfusion also appear to activate endothelial cells in remote organs that are not exposed to the initial ischaemic insult. This distant response to I/R can result in leukocyte-dependent microvascular injury that is characteristic of the multiple organ dysfunction syndrome. Adaptational responses to I/R injury have been demonstrated that allow for protection of briefly ischaemic tissues against the harmful effects of subsequent, prolonged ischaemia, a phenomenon called ischaemic preconditioning. There are two temporally and mechanistically distinct types of protection afforded by this adaptational response, i.e. acute and delayed preconditioning. The factors (e.g. protein kinase C activation) that initiate the acute and delayed preconditioning responses appear to be similar; however the protective effects of acute preconditioning are protein synthesis-independent, while the effects of delayed preconditioning require protein synthesis. The published literature in this field of investigation suggests that there are several potential targets for therapeutic intervention against I/R-induced microvascular injury. Copyright 2000 John Wiley & Sons, Ltd.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Apoptosis, oncosis, and necrosis. An overview of cell death.

            The historical development of the cell death concept is reviewed, with special attention to the origin of the terms necrosis, coagulation necrosis, autolysis, physiological cell death, programmed cell death, chromatolysis (the first name of apoptosis in 1914), karyorhexis, karyolysis, and cell suicide, of which there are three forms: by lysosomes, by free radicals, and by a genetic mechanism (apoptosis). Some of the typical features of apoptosis are discussed, such as budding (as opposed to blebbing and zeiosis) and the inflammatory response. For cell death not by apoptosis the most satisfactory term is accidental cell death. Necrosis is commonly used but it is not appropriate, because it does not indicate a form of cell death but refers to changes secondary to cell death by any mechanism, including apoptosis. Abundant data are available on one form of accidental cell death, namely ischemic cell death, which can be considered an entity of its own, caused by failure of the ionic pumps of the plasma membrane. Because ischemic cell death (in known models) is accompanied by swelling, the name oncosis is proposed for this condition. The term oncosis (derived from ónkos, meaning swelling) was proposed in 1910 by von Reckling-hausen precisely to mean cell death with swelling. Oncosis leads to necrosis with karyolysis and stands in contrast to apoptosis, which leads to necrosis with karyorhexis and cell shrinkage.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oxygen free radicals in ischemic acute renal failure in the rat.

              During renal ischemia, ATP is degraded to hypoxanthine. When xanthine oxidase converts hypoxanthine to xanthine in the presence of molecular oxygen, superoxide radical (O-2) is generated. We studied the role of O-2 and its reduction product OH X in mediating renal injury after ischemia. Male Sprague-Dawley rats underwent right nephrectomy followed by 60 min of occlusion of the left renal artery. The O-2 scavenger superoxide dismutase (SOD) was given 8 min before clamping and before release of the renal artery clamp. Control rats received 5% dextrose instead. Plasma creatinine was lower in SOD treated rats: 1.5, 1.0, and 0.8 mg/dl vs. 2.5, 2.5, and 2.1 mg/dl at 24, 48, and 72 h postischemia. 24 h after ischemia inulin clearance was higher in SOD treated rats than in controls (399 vs. 185 microliter/min). Renal blood flow, measured after ischemia plus 15 min of reflow, was also greater in SOD treated than in control rats. Furthermore, tubular injury, judged histologically in perfusion fixed specimens, was less in SOD treated rats. Rats given SOD inactivated by prior incubation with diethyldithiocarbamate had plasma creatinine values no different from those of control rats. The OH X scavenger dimethylthiourea (DMTU) was given before renal artery occlusion. DMTU treated rats had lower plasma creatinine than did controls: 1.7, 1.7, and 1.3 mg/dl vs. 3.2, 2.2, and 2.4 mg/dl at 24, 48, and 72 h postischemia. Neither SOD nor DMTU caused an increase in renal blood flow, urine flow rate, or solute excretion in normal rats. The xanthine oxidase inhibitor allopurinol was given before ischemia to prevent the generation of oxygen free radicals. Plasma creatinine was lower in allopurinol treated rats: 2.7, 2.2, and 1.4 mg/dl vs. 3.6, 3.5, and 2.3 mg/dl at 24, 48, and 72 h postischemia. Catalase treatment did not protect against renal ischemia, perhaps because its large size limits glomerular filtration and access to the tubular lumen. Superoxide-mediated lipid peroxidation was studied after renal ischemia. 60 min of ischemia did not increase the renal content of the lipid peroxide malondialdehyde, whereas ischemia plus 15 min reflow resulted in a large increase in kidney lipid peroxides. Treatment with SOD before renal ischemia prevented the reflow-induced increase in lipid peroxidation in renal cortical mitochondria but not in crude cortical homogenates. In summary, the oxygen free radical scavengers SOD and DMTU, and allopurinol, which inhibits free radical generation, protected renal function after ischemia. Reperfusion after ischemia resulted in lipid peroxidation; SOD decreased lipid peroxidation in cortical mitochondria after renal ischemia and reflow. We concluded that restoration of oxygen supply to ischemic kidney results in the production of oxygen free radicals, which causes renal injury by lipid peroxidation.
                Bookmark

                Author and article information

                Journal
                Prz Gastroenterol
                Prz Gastroenterol
                PG
                Przegla̜d Gastroenterologiczny
                Termedia Publishing House
                1895-5770
                1897-4317
                09 October 2019
                2020
                : 15
                : 2
                : 161-172
                Affiliations
                [1 ]Department of Pathology, Hatay Mustafa Kemal University, Veterinary Faculty, Hatay, Turkey
                [2 ]Department of Pathology, Van Yuzuncu Yil University, Veterinary Faculty, Van, Turkey
                Author notes
                Address for correspondence: Assist. Prof. Dr. Ahmet Uyar, Department of Pathology, Veterinary Faculty, Mustafa Kemal University, 31040, Hatay, Turkey. phone: +90 3262455313, fax: +903262455704. e-mail: uyarahmet@ 123456hotmail.com
                Article
                37954
                10.5114/pg.2019.88620
                7294969
                32550950
                47842368-5d28-4982-924d-589c66c86891
                Copyright: © 2020 Termedia Sp. z o. o.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License, allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.

                History
                : 24 April 2019
                : 09 August 2019
                Categories
                Original Paper

                hepatorenal ischaemia reperfusion injury,astaxanthin,endothelial nitric oxide synthase

                Comments

                Comment on this article