11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Early Phase Tumor Accumulation of Macromolecules: A Great Difference in Clearance Rate between Tumor and Normal Tissues

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The objective of this study was to investigate the molecular weight (MW) and time‐dependence of the phenomenon termed “the enhanced permeability and retention”(EPR) effect in solid tumor, in particular to determine and define the early phase accumulation of macromolecules in tumor and normal tissues and the relationship between blood concentration and tissue clearance. As a model, radioiodinated N‐(2‐hydroxypropyl)methacrylamide (HPMA) copolymers of MW ranging from 4.5 K to 800 K were administered i.v. to mice bearing sarcoma 180 tumor. Within 10 min all HPMA copolymers accumulated effectively in the tumor regardless of MW (1.0–1.5% of injected dose per g of tumor). However, higher MW copolymers (>50 K) showed significantly increased tumor accumulation after 6 h, while the lower MW copolymers (<40 K) were cleared rapidly from tumor tissue due to rapid diffusion back into the bloodstream. Blood clearance was also MW‐dependent; the lower MW copolymers displayed rapid clearance, with kidney radioactivity of the copolymers of MW <20 K representing 24% of injected dose per g kidney at 1 min after i.v. administration. Within 10 min these copolymers passed through the kidney and were excreted in the urine. Higher MW copolymers consistently showed kidney levels of 3–5% dose per g kidney in the early phase with no time‐dependent accumulation in kidney. There was also no progressive accumulation in muscle or liver, regardless of polymer MW. These results suggest the “EPR effect” in solid tumor primarily arises from in the difference in clearance rate between the solid tumor and the normal tissues after initial penetration of the polymers into these tissues.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs.

          We previously found that a polymer conjugated to the anticancer protein neocarzinostatin, named smancs, accumulated more in tumor tissues than did neocarzinostatin. To determine the general mechanism of this tumoritropic accumulation of smancs and other proteins, we used radioactive (51Cr-labeled) proteins of various molecular sizes (Mr 12,000 to 160,000) and other properties. In addition, we used dye-complexed serum albumin to visualize the accumulation in tumors of tumor-bearing mice. Many proteins progressively accumulated in the tumor tissues of these mice, and a ratio of the protein concentration in the tumor to that in the blood of 5 was obtained within 19 to 72 h. A large protein like immunoglobulin G required a longer time to reach this value of 5. The protein concentration ratio in the tumor to that in the blood of neither 1 nor 5 was achieved with neocarzinostatin, a representative of a small protein (Mr 12,000) in all time. We speculate that the tumoritropic accumulation of these proteins resulted because of the hypervasculature, an enhanced permeability to even macromolecules, and little recovery through either blood vessels or lymphatic vessels. This accumulation of macromolecules in the tumor was also found after i.v. injection of an albumin-dye complex (Mr 69,000), as well as after injection into normal and tumor tissues. The complex was retained only by tumor tissue for prolonged periods. There was little lymphatic recovery of macromolecules from tumor tissue. The present finding is of potential value in macromolecular tumor therapeutics and diagnosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Vascular endothelial growth factor is a secreted angiogenic mitogen.

            Vascular endothelial growth factor (VEGF) was purified from media conditioned by bovine pituitary folliculostellate cells (FC). VEGF is a heparin-binding growth factor specific for vascular endothelial cells that is able to induce angiogenesis in vivo. Complementary DNA clones for bovine and human VEGF were isolated from cDNA libraries prepared from FC and HL60 leukemia cells, respectively. These cDNAs encode hydrophilic proteins with sequences related to those of the A and B chains of platelet-derived growth factor. DNA sequencing suggests the existence of several molecular species of VEGF. VEGFs are secreted proteins, in contrast to other endothelial cell mitogens such as acidic or basic fibroblast growth factors and platelet-derived endothelial cell growth factor. Human 293 cells transfected with an expression vector containing a bovine or human VEGF cDNA insert secrete an endothelial cell mitogen that behaves like native VEGF.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid.

              Tumor ascites fluids from guinea pigs, hamsters, and mice contain activity that rapidly increases microvascular permeability. Similar activity is also secreted by these tumor cells and a variety of other tumor cell lines in vitro. The permeability-increasing activity purified from either the culture medium or ascites fluid of one tumor, the guinea pig line 10 hepatocarcinoma, is a 34,000- to 42,000-dalton protein distinct from other known permeability factors.
                Bookmark

                Author and article information

                Journal
                Jpn J Cancer Res
                Jpn. J. Cancer Res
                10.1111/(ISSN)1349-7006a
                CAS
                Japanese Journal of Cancer Research : Gann
                Blackwell Publishing Ltd (Oxford, UK )
                0910-5050
                1876-4673
                March 1998
                : 89
                : 3 ( doiID: 10.1111/cas.1998.89.issue-3 )
                : 307-314
                Affiliations
                [ 1 ]Department of Microbiology, Kumamoto University School of Medicine, 2‐2‐1 Honjo, Kumamoto 860
                [ 2 ]Centre for Polymer Therapeutics, School of Pharmacy, University of London, 29‐39 Brunswick Square, London, WC1N 1AX, U.K.
                [ 3 ]Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
                Author notes
                [*] [* ]To whom correspondence and reprint requests should be addressed.
                Article
                CAE307
                10.1111/j.1349-7006.1998.tb00563.x
                5921799
                9600125
                47adefa2-cf9e-4145-a4c1-06d4eb242bcc
                History
                Page count
                References: 37, Pages: 8
                Categories
                Article
                Custom metadata
                2.0
                March 1998
                Converter:WILEY_ML3GV2_TO_NLMPMC version:4.6.9 mode:remove_FC converted:04.11.2015

                polymer drugs,tumor targeting accumulation,epr effect,tumor vascular permeability,tissue clearance

                Comments

                Comment on this article