79
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inhibition of melanogenesis and antioxidant properties of Magnolia grandiflora L. flower extract

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Magnolia grandiflora L. flower is wildly used in Asian as a traditional herbal medication. The purpose of the study was to investigate the antimelanogenic and antioxidant properties of Magnolia grandiflora L. flower extract. In the study, the inhibitory effects of M. grandiflora L. flower extract on mushroom tyrosinase, B16F10 intracellular tyrosinase activity and melanin content were determined spectrophotometrically. Meanwhile, the antioxidative capacity of the flower extract was also investigated.

          Results

          Our results revealed that M. grandiflora L. flower extract inhibit mushroom tyrosinase activity (IC 50 =11.1%; v/v), the flower extract also effectively suppressed intracellular tyrosinase activity (IC 50 = 13.6%; v/v) and decreased the amount of melanin (IC 50 = 25.6%; v/v) in a dose-dependent manner in B16F10 cells. Protein expression level of tyrosinase and tyrosinase-related protein 1 (TRP-1) were also decreased by the flower extract. Additionally, antioxidant capacities such as ABTS + free radical scavenging activity, reducing capacity and total phenolic content of the flower extract were increased in a dose-dependent pattern.

          Conclusions

          Our results concluded that M. grandiflora L. flower extract decreased the expression of tyrosinase and TRP-1, and then inhibited melanogenesis in B16F10 cells. The flower extract also show antioxidant capacities and depleted cellular reactive oxygen species (ROS). Hence, M. grandiflora L. flower extract could be applied as a type of dermatological whitening agent in skin care products.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Antioxidant activity applying an improved ABTS radical cation decolorization assay.

          A method for the screening of antioxidant activity is reported as a decolorization assay applicable to both lipophilic and hydrophilic antioxidants, including flavonoids, hydroxycinnamates, carotenoids, and plasma antioxidants. The pre-formed radical monocation of 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS*+) is generated by oxidation of ABTS with potassium persulfate and is reduced in the presence of such hydrogen-donating antioxidants. The influences of both the concentration of antioxidant and duration of reaction on the inhibition of the radical cation absorption are taken into account when determining the antioxidant activity. This assay clearly improves the original TEAC assay (the ferryl myoglobin/ABTS assay) for the determination of antioxidant activity in a number of ways. First, the chemistry involves the direct generation of the ABTS radical monocation with no involvement of an intermediary radical. Second, it is a decolorization assay; thus the radical cation is pre-formed prior to addition of antioxidant test systems, rather than the generation of the radical taking place continually in the presence of the antioxidant. Hence the results obtained with the improved system may not always be directly comparable with those obtained using the original TEAC assay. Third, it is applicable to both aqueous and lipophilic systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cyclic AMP a key messenger in the regulation of skin pigmentation.

            Compelling evidence has been gathered indicating that pro-opiomelanocortin peptides, alpha-melanocyte stimulating hormone (alpha-MSH) and adrenocorticotropic hormone (ACTH), through the cyclic AMP pathway, play a pivotal role in melanocyte differentiation and in the regulation of melanogenesis. Recently, the molecular events linking cAMP to melanogenesis up-regulation have been elucidated. This cascade involves the activation of protein kinase A and CREB transcription factor, leading to the up-regulation of the expression of Microphthalmia associated transcription factor (MITF). MITF has been found mutated in patients with Waardenburg syndrome 2A, and plays a crucial role in melanocyte development. MITF binds and activates melanogenic gene promoters, thereby increasing their expression which results in an increased melanin synthesis. Beyond this simplified scheme, It appears that melanogenic gene expression is controlled by a complex network of regulation involving other transcription factors such as Brn2, TBX2, PAX3 and SOX10. Further studies are required to better understand the respective roles of these factors in the regulation of melanin synthesis. In addition, other intracellular signaling pathways, like the phosphatidyl inositol 3-kinase pathway, as well as the molecular cascade of events governed by the small GTP-binding protein Rho, seem to be involved in the regulation of melanogenesis and melanocyte dendricity. Finally, it should be mentioned that cAMP activates a melanocyte-specific pathway leading to MAP kinase activation. MAP kinase, ERK2, phosphorylates MITF, thereby targeting the transcription factor to proteasomes for degradation. Thus, in addition to the complex transcriptional regulation, melanogenesis is also subjected to a post-translational regulation that controls MITF or tyrosinase function. Taken together, these complex molecular processes would finally allow a fine tuning of melanocyte differentiation leading to melanin synthesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An improved colorimetric assay for interleukin 2.

              Mosmann's method for measuring the number of viable cells with a tetrazolium salt, 3-(4,5-dimethylthiazol-2-yl)-2,5-di-phenyltetrazolium bromide (MTT), was modified to make it possible to measure a large number of interleukin 2 (IL-2) samples at one time with less labor and more accuracy. Each step of the method was examined in detail and modified (the modified MTT method). An IL-2-dependent mouse natural killer cell line, NKC3, was used as an indicator cell line. The incubation period before adding MTT was reduced to 24 h, A solution of 10% sodium dodecyl sulfate-0.01 N HCl was used to dissolve the MTT formazan produced. We have compared the values obtained by the modified MTT method and the conventional [3H]thymidine method (3H-TdR method), and confirmed that the estimates of IL-2 content were almost equal. The variation of IL-2 content measured by both methods was within 5% in terms of the standard error.
                Bookmark

                Author and article information

                Journal
                BMC Complement Altern Med
                BMC Complement Altern Med
                BMC Complementary and Alternative Medicine
                BioMed Central
                1472-6882
                2012
                6 June 2012
                : 12
                : 72
                Affiliations
                [1 ]Department of Medical Laboratory Science and Biotechnology, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan, 40402
                [2 ]Department of Applied Cosmetology & Master Program of Cosmetic Science, Hung Kuang University, No. 34, Chung-Chie Rd., Shalu, Taichung City, Taiwan, 43302
                [3 ]Niuer International Skincare Science Research Institute, 7F, No. 618, Ruiguang Rd., Neihu Dist., Taipei, Taiwan
                Article
                1472-6882-12-72
                10.1186/1472-6882-12-72
                3404006
                22672352
                47ae58d9-1ada-43f3-83f7-af2ac9f7f91d
                Copyright ©2012 Huang et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http:// http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 24 February 2012
                : 6 June 2012
                Categories
                Research Article

                Complementary & Alternative medicine
                tyrosinase,melanin,antioxidant,melanogenesis,magnolia grandiflora l

                Comments

                Comment on this article