62
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      k-OptForce: Integrating Kinetics with Flux Balance Analysis for Strain Design

      research-article
      , , *
      PLoS Computational Biology
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Computational strain design protocols aim at the system-wide identification of intervention strategies for the enhanced production of biochemicals in microorganisms. Existing approaches relying solely on stoichiometry and rudimentary constraint-based regulation overlook the effects of metabolite concentrations and substrate-level enzyme regulation while identifying metabolic interventions. In this paper, we introduce k-OptForce, which integrates the available kinetic descriptions of metabolic steps with stoichiometric models to sharpen the prediction of intervention strategies for improving the bio-production of a chemical of interest. It enables identification of a minimal set of interventions comprised of both enzymatic parameter changes (for reactions with available kinetics) and reaction flux changes (for reactions with only stoichiometric information). Application of k-OptForce to the overproduction of L-serine in E. coli and triacetic acid lactone (TAL) in S. cerevisiae revealed that the identified interventions tend to cause less dramatic rearrangements of the flux distribution so as not to violate concentration bounds. In some cases the incorporation of kinetic information leads to the need for additional interventions as kinetic expressions render stoichiometry-only derived interventions infeasible by violating concentration bounds, whereas in other cases the kinetic expressions impart flux changes that favor the overproduction of the target product thereby requiring fewer direct interventions. A sensitivity analysis on metabolite concentrations shows that the required number of interventions can be significantly affected by changing the imposed bounds on metabolite concentrations. Furthermore, k-OptForce was capable of finding non-intuitive interventions aiming at alleviating the substrate-level inhibition of key enzymes in order to enhance the flux towards the product of interest, which cannot be captured by stoichiometry-alone analysis. This study paves the way for the integrated analysis of kinetic and stoichiometric models and enables elucidating system-wide metabolic interventions while capturing regulatory and kinetic effects.

          Author Summary

          Computational strain design procedures aim at assisting metabolic engineering efforts by identifying metabolic interventions leading to the targeted overproduction of a desired chemical using network models of cellular metabolism. The effect of metabolite concentrations and substrate-level enzyme regulation cannot be captured with stoichiometry-only metabolic models and analysis methods. Here, we introduce k-OptForce, an optimization-based strain design framework incorporating the mechanistic details afforded by kinetic models, whenever available, into a genome-scale stoichiometric-based modeling formalism. The resulting optimization problems pose significant computational challenges due to the bilevel nature of the formulation and the nonconvex terms in the constraints. A tractable reformulation and solution procedure is introduced for solving the optimization problems. k-OptForce uses kinetic information to (re)apportion reaction fluxes in the network by identifying interventions comprised of both direct enzymatic parameter changes (for reactions with available kinetics) and reaction flux changes (for reactions with only stoichiometric information). Our results show that the introduction of kinetic expressions can significantly alter the identified interventions compared to those identified with stoichiometry-alone analysis. In particular, additional modifications are required in some cases to avoid the violation of metabolite concentration bounds, while in other cases, the kinetic constraints yield metabolic flux distributions that favor the overproduction of the desired product thereby requiring fewer direct interventions.

          Related collections

          Most cited references93

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information

          An updated genome-scale reconstruction of the metabolic network in Escherichia coli K-12 MG1655 is presented. This updated metabolic reconstruction includes: (1) an alignment with the latest genome annotation and the metabolic content of EcoCyc leading to the inclusion of the activities of 1260 ORFs, (2) characterization and quantification of the biomass components and maintenance requirements associated with growth of E. coli and (3) thermodynamic information for the included chemical reactions. The conversion of this metabolic network reconstruction into an in silico model is detailed. A new step in the metabolic reconstruction process, termed thermodynamic consistency analysis, is introduced, in which reactions were checked for consistency with thermodynamic reversibility estimates. Applications demonstrating the capabilities of the genome-scale metabolic model to predict high-throughput experimental growth and gene deletion phenotypic screens are presented. The increased scope and computational capability using this new reconstruction is expected to broaden the spectrum of both basic biology and applied systems biology studies of E. coli metabolism.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The effects of alternate optimal solutions in constraint-based genome-scale metabolic models.

            Genome-scale constraint-based models of several organisms have now been constructed and are being used for model driven research. A key issue that may arise in the use of such models is the existence of alternate optimal solutions wherein the same maximal objective (e.g., growth rate) can be achieved through different flux distributions. Herein, we investigate the effects that alternate optimal solutions may have on the predicted range of flux values calculated using currently practiced linear (LP) and quadratic programming (QP) methods. An efficient LP-based strategy is described to calculate the range of flux variability that can be present in order to achieve optimal as well as suboptimal objective states. Sample results are provided for growth predictions of E. coli using glucose, acetate, and lactate as carbon substrates. These results demonstrate the extent of flux variability to be highly dependent on environmental conditions and network composition. In addition we examined the impact of alternate optima for growth under gene knockout conditions as calculated using QP-based methods. It was observed that calculations using QP-based methods can show significant variation in growth rate if the flux variability among alternate optima is high. The underlying biological significance and general source of such flux variability is further investigated through the identification of redundancies in the network (equivalent reaction sets) that lead to alternate solutions. Collectively, these results illustrate the variability inherent in metabolic flux distributions and the possible implications of this heterogeneity for constraint-based modeling approaches. These methods also provide an efficient and robust method to calculate the range of flux distributions that can be derived from quantitative fermentation data.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Analysis of optimality in natural and perturbed metabolic networks.

              An important goal of whole-cell computational modeling is to integrate detailed biochemical information with biological intuition to produce testable predictions. Based on the premise that prokaryotes such as Escherichia coli have maximized their growth performance along evolution, flux balance analysis (FBA) predicts metabolic flux distributions at steady state by using linear programming. Corroborating earlier results, we show that recent intracellular flux data for wild-type E. coli JM101 display excellent agreement with FBA predictions. Although the assumption of optimality for a wild-type bacterium is justifiable, the same argument may not be valid for genetically engineered knockouts or other bacterial strains that were not exposed to long-term evolutionary pressure. We address this point by introducing the method of minimization of metabolic adjustment (MOMA), whereby we test the hypothesis that knockout metabolic fluxes undergo a minimal redistribution with respect to the flux configuration of the wild type. MOMA employs quadratic programming to identify a point in flux space, which is closest to the wild-type point, compatibly with the gene deletion constraint. Comparing MOMA and FBA predictions to experimental flux data for E. coli pyruvate kinase mutant PB25, we find that MOMA displays a significantly higher correlation than FBA. Our method is further supported by experimental data for E. coli knockout growth rates. It can therefore be used for predicting the behavior of perturbed metabolic networks, whose growth performance is in general suboptimal. MOMA and its possible future extensions may be useful in understanding the evolutionary optimization of metabolism.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                PLoS Comput. Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                February 2014
                20 February 2014
                : 10
                : 2
                : e1003487
                Affiliations
                [1]Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, United States of America
                University of Michigan, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: AC ARZ CDM. Performed the experiments: AC. Analyzed the data: AC ARZ CDM. Contributed reagents/materials/analysis tools: AC ARZ CDM. Wrote the paper: AC ARZ CDM.

                Article
                PCOMPBIOL-D-13-01470
                10.1371/journal.pcbi.1003487
                3930495
                24586136
                47b4064e-1bb8-4da7-952f-36175a752164
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 19 August 2013
                : 10 January 2014
                Page count
                Pages: 18
                Funding
                The authors gratefully acknowledge funding from the NSF ( http://www.nsf.gov/) award no. EEC-0813570 and the DOE ( http://www.energy.gov/) grant no. DE-SC10822882. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Biochemistry
                Metabolism
                Metabolic pathways
                Computational biology
                Metabolic networks
                Systems biology
                Engineering
                Bioengineering
                Biological systems engineering
                Social and behavioral sciences
                Economics
                Operations research
                Mathematical optimization

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article