15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Autocrine and paracrine mechanisms of prostaglandin E₂ action on trophoblast/conceptus cells through the prostaglandin E₂ receptor (PTGER2) during implantation.

      Endocrinology
      Animals, Autocrine Communication, drug effects, Cell Adhesion, Cell Line, Cells, Cultured, Crosses, Genetic, Dinoprostone, agonists, antagonists & inhibitors, metabolism, Embryo, Mammalian, Embryonic Development, Estradiol, secretion, Extracellular Matrix, Female, Gene Expression Regulation, Developmental, Humans, Integrins, MAP Kinase Signaling System, Paracrine Communication, Prostaglandin Antagonists, pharmacology, Receptors, Prostaglandin E, EP2 Subtype, genetics, Sus scrofa, Trophoblasts, cytology

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The conceptus and endometrium secrete large amounts of prostaglandin E₂ (PGE₂) into the porcine uterine lumen during the periimplantation period. We hypothesized that PGE₂ acts on conceptus/trophoblast cells through auto- and paracrine mechanisms. Real-time RT-PCR analysis revealed that PGE₂ receptor (PTGER)2 mRNA was 14-fold greater in conceptuses/trophoblasts on days 14-25 (implantation and early placentation period) vs preimplantation day 10-13 conceptuses (P < .05). Similarly, expression of PTGER2 protein increased during implantation. Conceptus expression of PTGER4 mRNA and protein did not differ on days 10-19. PGE₂ stimulated PTGER2 mRNA expression in day 15 trophoblast cells through PTGER2 receptor signaling. PGE₂ elevated aromatase expression and estradiol-17β secretion by trophoblast cells. Moreover, PGE₂ and the PTGER2 agonist, butaprost, increased the adhesive capacity of both human HTR-8/SVneo trophoblast and primary porcine trophoblast cells to extracellular matrix. This PGE₂-induced alteration in trophoblast cell adhesion to extracellular matrix was abolished by incubation of these cells with AH6809 (PTGER2 antagonist), ITGAVB3-directed tetrapeptide arg-gly-asp-ser or integrin ITGAVB3 antibody. PGE₂ stimulated adhesion of porcine trophoblast cells via the estrogen receptor and MEK/MAPK signaling pathway. PGE₂ induced phosphorylation of MAPK1/MAPK3 through PTGER2 and up-regulated expression of cell adhesion proteins such as focal adhesion kinase and intercellular adhesion molecule-1. Our study indicates that elevated PGE₂ in the periimplantation uterine lumen stimulates conceptus PTGER2 expression, which in turn promotes trophoblast adhesion via integrins, and synthesis and secretion of the porcine embryonic signal estradiol-17β. Moreover, the mechanism through which PGE₂ increases trophoblast adhesion is not species specific because it is PTGER2- and integrin-dependent in both porcine and human trophoblast cells.

          Related collections

          Author and article information

          Comments

          Comment on this article