Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

Transportable data from non-target arthropod field studies for the environmental risk assessment of genetically modified maize expressing an insecticidal double-stranded RNA

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      As part of an environmental risk assessment, the potential impact of genetically modified (GM) maize MON 87411 on non-target arthropods (NTAs) was evaluated in the field. MON 87411 confers resistance to corn rootworm (CRW; Diabrotica spp.) by expressing an insecticidal double-stranded RNA (dsRNA) transcript and the Cry3Bb1 protein and tolerance to the herbicide glyphosate by producing the CP4 EPSPS protein. Field trials were conducted at 14 sites providing high geographic and environmental diversity within maize production areas from three geographic regions including the U.S., Argentina, and Brazil. MON 87411, the conventional control, and four commercial conventional reference hybrids were evaluated for NTA abundance and damage. Twenty arthropod taxa met minimum abundance criteria for valid statistical analysis. Nine of these taxa occurred in at least two of the three regions and in at least four sites across regions. These nine taxa included: aphid, predatory earwig, lacewing, ladybird beetle, leafhopper, minute pirate bug, parasitic wasp, sap beetle, and spider. In addition to wide regional distribution, these taxa encompass the ecological functions of herbivores, predators and parasitoids in maize agro-ecosystems. Thus, the nine arthropods may serve as representative taxa of maize agro-ecosystems, and thereby support that analysis of relevant data generated in one region can be transportable for the risk assessment of the same or similar GM crop products in another region. Across the 20 taxa analyzed, no statistically significant differences in abundance were detected between MON 87411 and the conventional control for 123 of the 128 individual-site comparisons (96.1 %). For the nine widely distributed taxa, no statistically significant differences in abundance were detected between MON 87411 and the conventional control. Furthermore, no statistically significant differences were detected between MON 87411 and the conventional control for 53 out of 56 individual-site comparisons (94.6 %) of NTA pest damage to the crop. In each case where a significant difference was observed in arthropod abundance or damage, the mean value for MON 87411 was within the reference range and/or the difference was not consistently observed across collection methods and/or sites. Thus, the differences were not representative of an adverse effect unfamiliar to maize and/or were not indicative of a consistent plant response associated with the GM traits. Results from this study support a conclusion of no adverse environmental impact of MON 87411 on NTAs compared to conventional maize and demonstrate the utility of relevant transportable data across regions for the ERA of GM crops.Electronic supplementary materialThe online version of this article (doi:10.1007/s11248-015-9907-3) contains supplementary material, which is available to authorized users.

      Related collections

      Most cited references 64

      • Record: found
      • Abstract: found
      • Article: not found

      Ingested double-stranded RNAs can act as species-specific insecticides.

      A serious shortcoming of many insecticides is that they can kill non-target species. To address this issue, we harnessed the sequence specificity of RNA interference (RNAi) to design orally-delivered double-stranded (ds) RNAs that selectively killed target species. Fruit flies (Drosophila melanogaster), flour beetles (Tribolium castaneum), pea aphids (Acyrthosiphon pisum), and tobacco hornworms (Manduca sexta) were selectively killed when fed species-specific dsRNA targeting vATPase transcripts. We also demonstrate that even closely related species can be selectively killed by feeding on dsRNAs that target the more variable regions of genes, such as the 3' untranslated regions (UTRs): four species of the genus Drosophila were selectively killed by feeding on short (<40 nt) dsRNAs that targeted the 3' UTR of the gamma-tubulin gene. For the aphid nymphs and beetle and moth larvae, dsRNA could simply be dissolved into their diets, but to induce RNAi in the drosophilid species, the dsRNAs needed to be encapsulated in liposomes to help facilitate uptake of the dsRNA. This is the first demonstration of RNAi following ingestion of dsRNA in all of the species tested, and the method offers promise of both higher throughput RNAi screens and the development of a new generation of species-specific insecticides.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        Assessment of risk of insect-resistant transgenic crops to nontarget arthropods.

        An international initiative is developing a scientifically rigorous approach to evaluate the potential risks to nontarget arthropods (NTAs) posed by insect-resistant, genetically modified (IRGM) crops. It adapts the tiered approach to risk assessment that is used internationally within regulatory toxicology and environmental sciences. The approach focuses on the formulation and testing of clearly stated risk hypotheses, making maximum use of available data and using formal decision guidelines to progress between testing stages (or tiers). It is intended to provide guidance to regulatory agencies that are currently developing their own NTA risk assessment guidelines for IRGM crops and to help harmonize regulatory requirements between different countries and different regions of the world.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          Transgenic crops expressing Bacillus thuringiensis toxins and biological control.

          The area devoted to growing transgenic plants expressing insecticidal Cry proteins derived from Bacillus thuringiensis (Bt) is increasing worldwide. A major concern with the adoption of Bt crops is their potential impact on nontarget organisms including biological control organisms. Regulatory frameworks should advocate a step-wise (tiered) approach to assess possible nontarget effects of Bt crops. Laboratory and glasshouse studies have revealed effects on natural enemies only when Bt-susceptible, sublethally damaged herbivores were used as prey or host, with no indication of direct toxic effects. Field studies have confirmed that the abundance and activity of parasitoids and predators are similar in Bt and non-Bt crops. In contrast, applications of conventional insecticides have usually resulted in negative impacts on biological control organisms. Because Bt-transgenic varieties can lead to substantial reductions in insecticide use in some crops, they can contribute to integrated pest management systems with a strong biological control component.
            Bookmark

            Author and article information

            Affiliations
            [ ]Monsanto Company, 800 N. Lindbergh Boulevard, St. Louis, MO 63141 USA
            [ ]Monsanto Company, Fontezuela Research Station Route 8, km214, CP2700 Pergamino, Buenos Aires Argentina
            [ ]Monsanto Company, Dionisio Bortolotti Avenue, km 0.5, Caixa Postal 9, Santa Cruz das Palmeiras, São Paulo Brazil
            Contributors
            314-694-7150 , aqeel.ahmad@monsanto.com
            Journal
            Transgenic Res
            Transgenic Res
            Transgenic Research
            Springer International Publishing (Cham )
            0962-8819
            1573-9368
            3 October 2015
            3 October 2015
            2016
            : 25
            : 1-17
            26433587
            4735227
            9907
            10.1007/s11248-015-9907-3
            © The Author(s) 2015

            Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

            Categories
            Original Paper
            Custom metadata
            © Springer International Publishing Switzerland 2016

            Comments

            Comment on this article