Blog
About

  • Record: found
  • Abstract: found
  • Article: not found

The Drosophila innexin 7 gap junction protein is required for development of the embryonic nervous system.

Cell Communication & Adhesion

embryology, Nervous System, physiology, Gap Junctions, Female, metabolism, Epithelium, genetics, biosynthesis, Drosophila Proteins, Drosophila, Connexins, Axons, Animals, Genetically Modified, Animals

Read this article at

ScienceOpenPublisherPubMed
Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      The Drosophila genome encodes eight members of the innexin family of gap junction proteins. Most of the family members are expressed in complex and overlapping expression patterns during Drosophila development. Functional studies and mutant analysis have been performed for only few of the innexin genes. The authors generated an antibody against Innexin7 and studied its expression and functional role in embryonic development by using transgenic RNA interference (RNAi) lines. The authors found Innexin7 protein expression in all embryonic epithelia from early to late stages of development, including in the developing epidermis and the gastrointestinal tract. In early embryonic stages, the authors observed a nuclear localization of Innexin7, whereas Innexin7 was found in a punctuate pattern in the cytoplasm and at the membrane of most epithelial tissues at later stages of development. During central nervous system (CNS) development, Innexin7 was expressed in cells of the neuroectoderm and the mesectoderm and at later stages of embryogenesis, its expression was largely restricted to a segmental pattern of few glia and neuronal cells derived from the midline precursors. Coimmunostaining experiments showed that Innexin7 is expressed in midline glia, and in two different neuronal cells, the pCC and MP2 neurons, which are pioneer cells for axon guidance. RNAi-mediated knock down was used to gain insight into the embryonic function of innexin7. Down-regulation of innexin7 expression resulted in a severe disruption of embryonic nervous system development. Longitudinal, posterior, and anterior commissures were disrupted and the outgrowth of axon fibers of the ventral nerve cord was aberrant, causing peripheral nervous system defects. The results suggest an essential role for innexin7 for axon guidance and embryonic nervous system development in Drosophila.

      Related collections

      Author and article information

      Journal
      10.1080/15419060802013976
      18649187

      Comments

      Comment on this article