46
views
0
recommends
+1 Recommend
2 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Proteomic changes of the porcine small intestine in response to chronic heat stress

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Acute heat stress (HS) negatively affects intestinal integrity and barrier function. In contrast, chronic mild HS poses a distinct challenge to animals. Therefore, this study integrates biochemical, histological and proteomic approaches to investigate the effects of chronic HS on the intestine in finishing pigs. Castrated male crossbreeds (79.00±1.50 kg BW) were subjected to either thermal neutral (TN, 21 °C; 55%±5% humidity; n=8) or HS conditions (30 °C; 55%±5% humidity; n=8) for 3 weeks. The pigs were sacrificed after 3 weeks of high environmental exposure and the plasma hormones, the intestinal morphology, integrity, and protein profiles of the jejunum mucosa were determined. Chronic HS reduced the free triiodothyronine (FT 3) and GH levels. HS damaged intestinal morphology, increased plasma d-lactate concentrations and decreased alkaline phosphatase activity of intestinal mucosa. Proteome analysis of the jejunum mucosa was conducted by 2D gel electrophoresis and mass spectrometry. Fifty-three intestinal proteins were found to be differentially abundant, 18 of which were related to cell structure and motility, and their changes in abundance could comprise intestinal integrity and function. The down-regulation of proteins involved in tricarboxylic acid cycle (TCA cycle), electron transport chain (ETC), and oxidative phosphorylation suggested that chronic HS impaired energy metabolism and thus induced oxidative stress. Moreover, the changes of ten proteins in abundance related to stress response and defense indicated pigs mediated long-term heat exposure and counteracted its negative effects of heat exposure. These findings have important implications for understanding the effect of chronic HS on intestines.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            • Record: found
            • Abstract: found
            • Article: not found

            Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance.

            Cells from virtually all organisms respond to a variety of stresses by the rapid synthesis of a highly conserved set of polypeptides termed heat shock proteins (HSPs). The precise functions of HSPs are unknown, but there is considerable evidence that these stress proteins are essential for survival at both normal and elevated temperatures. HSPs also appear to play a critical role in the development of thermotolerance and protection from cellular damage associated with stresses such as ischemia, cytokines, and energy depletion. These observations suggest that HSPs play an important role in both normal cellular homeostasis and the stress response. This mini-review examines recent evidence and hypotheses suggesting that the HSPs may be important modifying factors in cellular responses to a variety of physiologically relevant conditions such as hyperthermia, exercise, oxidative stress, metabolic challenge, and aging.
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular basis of epithelial barrier regulation: from basic mechanisms to clinical application.

              The intestinal epithelium is faced with the complex task of providing a barrier while also allowing nutrient and water absorption. The frequency with which these processes are disrupted in disease can be taken as evidence of their importance. It is therefore of interest to define the mechanisms of altered intestinal barrier and transport function and develop means to correct disease-associated defects. Over the past 10 years, some of the molecular events underlying physiological epithelial barrier regulation have been described. Remarkably, recent advances have shown that activation of the same mechanisms is central to barrier dysfunction in both in vitro and in vivo models of disease. Although the contribution of barrier dysfunction to pathogenesis of chronic disease remains incompletely understood, it is now clear that cytoskeletal regulation of barrier function is both an important pathogenic process and that targeted inhibition of myosin light chain kinase, which affects this cytoskeleton-dependent tight junction dysfunction, is an attractive candidate for therapeutic intervention.

                Author and article information

                Journal
                J Mol Endocrinol
                J. Mol. Endocrinol
                JME
                Journal of Molecular Endocrinology
                Bioscientifica Ltd (Bristol )
                0952-5041
                1479-6813
                December 2015
                28 September 2015
                : 55
                : 3
                : 277-293
                Affiliations
                [1 ]State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Science , Beijing, 100193, People's Republic of China
                Author notes
                Correspondence should be addressed to X Gu; Email: guxianhong@ 123456vip.sina.com
                Article
                JME150161
                10.1530/JME-15-0161
                4632496
                26416815
                47e5a573-b8cd-4afe-9671-69e42e0facfa
                © 2015 The authors

                This work is licensed under a Creative Commons Attribution 3.0 Unported License

                History
                : 26 August 2015
                : 28 September 2015
                Categories
                Research

                Endocrinology & Diabetes
                heat stress,intestine function,morphology,proteomic,pig (sus scrofa)
                Endocrinology & Diabetes
                heat stress, intestine function, morphology, proteomic, pig (sus scrofa)

                Comments

                Comment on this article

                Related Documents Log