3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Modulation of the molecular composition of large conductance, Ca2+ activated K+ channels in vascular smooth muscle during hypertension

      , , , ,
      Journal of Clinical Investigation
      American Society for Clinical Investigation

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Relaxation of arterial smooth muscle by calcium sparks.

          Local increases in intracellular calcium ion concentration ([Ca2+]i) resulting from activation of the ryanodine-sensitive calcium-release channel in the sarcoplasmic reticulum (SR) of smooth muscle cause arterial dilation. Ryanodine-sensitive, spontaneous local increases in [Ca2+]i (Ca2+ sparks) from the SR were observed just under the surface membrane of single smooth muscle cells from myogenic cerebral arteries. Ryanodine and thapsigargin inhibited Ca2+ sparks and Ca(2+)-dependent potassium (KCa) currents, suggesting that Ca2+ sparks activate KCa channels. Furthermore, KCa channels activated by Ca2+ sparks appeared to hyperpolarize and dilate pressurized myogenic arteries because ryanodine and thapsigargin depolarized and constricted these arteries to an extent similar to that produced by blockers of KCa channels. Ca2+ sparks indirectly cause vasodilation through activation of KCa channels, but have little direct effect on spatially averaged [Ca2+]i, which regulates contraction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of arterial diameter and wall [Ca2+] in cerebral arteries of rat by membrane potential and intravascular pressure.

            1. The regulation of intracellular [Ca2+] in the smooth muscle cells in the wall of small pressurized cerebral arteries (100-200 micron) of rat was studied using simultaneous digital fluorescence video imaging of arterial diameter and wall [Ca2+], combined with microelectrode measurements of arterial membrane potential. 2. Elevation of intravascular pressure (from 10 to 100 mmHg) caused a membrane depolarization from -63 +/- 1 to -36 +/- 2 mV, increased arterial wall [Ca2+] from 119 +/- 10 to 245 +/- 9 nM, and constricted the arteries from 208 +/- 10 micron (fully dilated, Ca2+ free) to 116 +/- 7 micron or by 45 % ('myogenic tone'). 3. Pressure-induced increases in arterial wall [Ca2+] and vasoconstriction were blocked by inhibitors of voltage-dependent Ca2+ channels (diltiazem and nisoldipine) or to the same extent by removal of external Ca2+. 4. At a steady pressure (i.e. under isobaric conditions at 60 mmHg), the membrane potential was stable at -45 +/- 1 mV, intracellular [Ca2+] was 190 +/- 10 nM, and arteries were constricted by 41 % (to 115 +/- 7 micron from 196 +/- 8 micron fully dilated). Under this condition of -45 +/- 5 mV at 60 mmHg, the voltage sensitivity of wall [Ca2+] and diameter were 7.5 nM mV-1 and 7.5 micron mV-1, respectively, resulting in a Ca2+ sensitivity of diameter of 1 mum nM-1. 5. Membrane potential depolarization from -58 to -23 mV caused pressurized arteries (to 60 mmHg) to constrict over their entire working range, i.e. from maximally dilated to constricted. This depolarization was associated with an elevation of arterial wall [Ca2+] from 124 +/- 7 to 347 +/- 12 nM. These increases in arterial wall [Ca2+] and vasoconstriction were blocked by L-type voltage-dependent Ca2+ channel inhibitors. 6. The relationship between arterial wall [Ca2+] and membrane potential was not significantly different under isobaric (60 mmHg) and non-isobaric conditions (10-100 mmHg), suggesting that intravascular pressure regulates arterial wall [Ca2+] through changes in membrane potential. 7. The results are consistent with the idea that intravascular pressure causes membrane potential depolarization, which opens voltage-dependent Ca2+ channels, acting as 'voltage sensors', thus increasing Ca2+ entry and arterial wall [Ca2+], which leads to vasoconstriction.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Physiological aspects of primary hypertension.

              B Folkow (1982)
                Bookmark

                Author and article information

                Journal
                Journal of Clinical Investigation
                J. Clin. Invest.
                American Society for Clinical Investigation
                0021-9738
                September 1 2003
                September 1 2003
                : 112
                : 5
                : 717-724
                Article
                10.1172/JCI200318684
                47f55bba-d523-4356-b8af-e6700d1cc32b
                © 2003
                History

                Comments

                Comment on this article