61
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Pore-Forming Toxin Listeriolysin O Mediates a Novel Entry Pathway of L. monocytogenes into Human Hepatocytes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Intracellular pathogens have evolved diverse strategies to invade and survive within host cells. Among the most studied facultative intracellular pathogens, Listeria monocytogenes is known to express two invasins-InlA and InlB-that induce bacterial internalization into nonphagocytic cells. The pore-forming toxin listeriolysin O (LLO) facilitates bacterial escape from the internalization vesicle into the cytoplasm, where bacteria divide and undergo cell-to-cell spreading via actin-based motility. In the present study we demonstrate that in addition to InlA and InlB, LLO is required for efficient internalization of L. monocytogenes into human hepatocytes (HepG2). Surprisingly, LLO is an invasion factor sufficient to induce the internalization of noninvasive Listeria innocua or polystyrene beads into host cells in a dose-dependent fashion and at the concentrations produced by L. monocytogenes. To elucidate the mechanisms underlying LLO-induced bacterial entry, we constructed novel LLO derivatives locked at different stages of the toxin assembly on host membranes. We found that LLO-induced bacterial or bead entry only occurs upon LLO pore formation. Scanning electron and fluorescence microscopy studies show that LLO-coated beads stimulate the formation of membrane extensions that ingest the beads into an early endosomal compartment. This LLO-induced internalization pathway is dynamin-and F-actin-dependent, and clathrin-independent. Interestingly, further linking pore formation to bacteria/bead uptake, LLO induces F-actin polymerization in a tyrosine kinase-and pore-dependent fashion. In conclusion, we demonstrate for the first time that a bacterial pathogen perforates the host cell plasma membrane as a strategy to activate the endocytic machinery and gain entry into the host cell.

          Author Summary

          Listeria monocytogenes is responsible for the severe foodborne disease listeriosis. During pathogenesis, invasion of nonphagocytic cells by L. monocytogenes is crucial for crossing the host epithelial barriers and colonization of multiple organs including the liver. In this study, we investigated the role of the pore-forming toxin listeriolysin O (LLO) in L. monocytogenes entry into human hepatocytes. LLO belongs to the largest family of bacterial pore-forming toxins called the cholesterol-dependent cytolysins and is a major virulence factor of L. monocytogenes. We observed that LLO is required for efficient entry of L. monocytogenes into hepatocytes and shed light on the molecular processes involved in this activity. Using different experimental approaches, we provide the first evidence that LLO is sufficient to induce bacterial internalization into host cells by a pore-dependent mechanism. LLO induces tyrosine kinase(s)-, dynamin-, and F-actin-dependent formation of an internalization vesicle. Similar to LLO, the pore-forming toxin pneumolysin regulates bacterial entry into host cells. Together, these findings indicate that host membrane perforation by a pore-forming toxin can be used as an invasion strategy by L. monocytogenes and raise the hypothesis that other bacteria may use a similar entry pathway.

          Related collections

          Most cited references81

          • Record: found
          • Abstract: found
          • Article: not found

          Comparative genomics of Listeria species.

          Listeria monocytogenes is a food-borne pathogen with a high mortality rate that has also emerged as a paradigm for intracellular parasitism. We present and compare the genome sequences of L. monocytogenes (2,944,528 base pairs) and a nonpathogenic species, L. innocua (3,011,209 base pairs). We found a large number of predicted genes encoding surface and secreted proteins, transporters, and transcriptional regulators, consistent with the ability of both species to adapt to diverse environments. The presence of 270 L. monocytogenes and 149 L. innocua strain-specific genes (clustered in 100 and 63 islets, respectively) suggests that virulence in Listeria results from multiple gene acquisition and deletion events.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bacterial adhesion and entry into host cells.

            Successful establishment of infection by bacterial pathogens requires adhesion to host cells, colonization of tissues, and in certain cases, cellular invasion-followed by intracellular multiplication, dissemination to other tissues, or persistence. Bacteria use monomeric adhesins/invasins or highly sophisticated macromolecular machines such as type III secretion systems and retractile type IV pili to establish a complex host/pathogen molecular crosstalk that leads to subversion of cellular functions and establishment of disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bacterial invasion: the paradigms of enteroinvasive pathogens.

              Invasive bacteria actively induce their own uptake by phagocytosis in normally nonphagocytic cells and then either establish a protected niche within which they survive and replicate, or disseminate from cell to cell by means of an actin-based motility process. The mechanisms underlying bacterial entry, phagosome maturation, and dissemination reveal common strategies as well as unique tactics evolved by individual species to establish infection.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                November 2011
                November 2011
                3 November 2011
                : 7
                : 11
                : e1002356
                Affiliations
                [1 ]Departments of Microbiology and Internal Medicine, Center for Microbial Interface Biology, Ohio State University, Columbus, Ohio, United States of America
                [2 ]Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
                [3 ]Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
                Institut Pasteur, France
                Author notes

                Conceived and designed the experiments: SS EMWK. Performed the experiments: SV EA ACH EMWK SS. Analyzed the data: SV EA EMWK RKT SS. Contributed reagents/materials/analysis tools: EMWK RKT SS. Wrote the paper: SV SS. Critical reading and correction of the manuscript: EMWK RKT.

                Article
                PPATHOGENS-D-11-00558
                10.1371/journal.ppat.1002356
                3207921
                22072970
                47f56d74-8d46-4da0-b45d-24e39c508b60
                Vadia et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 15 March 2011
                : 20 September 2011
                Page count
                Pages: 19
                Categories
                Research Article
                Biology
                Microbiology
                Molecular Cell Biology

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article