17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Clinical, Genetic, and Protein Structural Aspects of Familial Dysalbuminemic Hyperthyroxinemia and Hypertriiodothyroninemia

      review-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Familial dysalbuminemic hyperthyroxinemia (FDH-T4) and hypertriiodothyroninemia (FDH-T3) are dominantly inherited syndromes characterized by a high concentration of thyroid hormone in the blood stream. The syndromes do not cause disease, because the concentration of free hormone is normal, but affected individuals are at risk of erroneous treatment. FDH-T4 is the most common cause of euthyroid hyperthyroxinemia in Caucasian populations in which its prevalence is about 1 in 10,000 individuals, but the prevalence can be much higher in some ethnic groups. The condition is caused by a genetic variant of human serum albumin (HSA); Arg218 is mutated to histidine, proline, or serine or Arg222 is changed to isoleucine. The disorder is characterized by greater elevation in serum l-thyroxine (T4) than in serum triiodothyronine (T3); T4 can be increased by a factor 8–15. The high serum concentration of T4 is due to modification of a binding site located in the N-terminal half of HSA (in subdomain IIA). Thus, mutating Arg218 or Arg222 for a smaller amino acid reduces the steric restrictions in the site and creates a high-affinity binding site. The mutations can also affect binding of other ligands and can perhaps cause modified pharmacokinetics of albumin-binding drugs. In normal HSA, the high-affinity site has another location (in subdomain IIIB). Different locations of these sites imply that persons with and without FDH-T4 can have different types of interactions, and thereby complications, when given albumin-binding drugs. FDH-T3 is caused by a leucine to proline mutation in position 66 of HSA, which results in a large increment of the binding affinity for T3 but not for T4. For avoiding unwanted treatment of euthyroid persons with hyperthyroxinemia or hypertriiodothyroninemia, protein sequencing and/or sequencing of the albumin gene should be performed.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Atomic structure and chemistry of human serum albumin.

          The three-dimensional structure of human serum albumin has been determined crystallographically to a resolution of 2.8 A. It comprises three homologous domains that assemble to form a heart-shaped molecule. Each domain is a product of two subdomains that possess common structural motifs. The principal regions of ligand binding to human serum albumin are located in hydrophobic cavities in subdomains IIA and IIIA, which exhibit similar chemistry. The structure explains numerous physical phenomena and should provide insight into future pharmacokinetic and genetically engineered therapeutic applications of serum albumin.
            • Record: found
            • Abstract: found
            • Article: not found

            Crystal structure of human serum albumin at 2.5 A resolution.

            A new triclinic crystal form of human serum albumin (HSA), derived either from pool plasma (pHSA) or from a Pichia pastoris expression system (rHSA), was obtained from polyethylene glycol 4000 solution. Three-dimensional structures of pHSA and rHSA were determined at 2.5 A resolution from the new triclinic crystal form by molecular replacement, using atomic coordinates derived from a multiple isomorphous replacement work with a known tetragonal crystal form. The structures of pHSA and rHSA are virtually identical, with an r.m. s. deviation of 0.24 A for all Calpha atoms. The two HSA molecules involved in the asymmetric unit are related by a strict local twofold symmetry such that the Calpha atoms of the two molecules can be superimposed with an r.m.s. deviation of 0.28 A in pHSA. Cys34 is the only cysteine with a free sulfhydryl group which does not participate in a disulfide linkage with any external ligand. Domains II and III both have a pocket formed mostly of hydrophobic and positively charged residues and in which a very wide range of compounds may be accommodated. Three tentative binding sites for long-chain fatty acids, each with different surroundings, are located at the surface of each domain.
              • Record: found
              • Abstract: found
              • Article: not found

              Pitfalls in the measurement and interpretation of thyroid function tests☆

              Thyroid function tests (TFTs) are amongst the most commonly requested laboratory investigations in both primary and secondary care. Fortunately, most TFTs are straightforward to interpret and confirm the clinical impression of euthyroidism, hypothyroidism or hyperthyroidism. However, in an important subgroup of patients the results of TFTs can seem confusing, either by virtue of being discordant with the clinical picture or because they appear incongruent with each other [e.g. raised thyroid hormones (TH), but with non-suppressed thyrotropin (TSH); raised TSH, but with normal TH]. In such cases, it is important first to revisit the clinical context, and to consider potential confounding factors, including alterations in normal physiology (e.g. pregnancy), intercurrent (non-thyroidal) illness, and medication usage (e.g. thyroxine, amiodarone, heparin). Once these have been excluded, laboratory artefacts in commonly used TSH or TH immunoassays should be screened for, thus avoiding unnecessary further investigation and/or treatment in cases where there is assay interference. In the remainder, consideration should be given to screening for rare genetic and acquired disorders of the hypothalamic–pituitary–thyroid (HPT) axis [e.g. resistance to thyroid hormone (RTH), thyrotropinoma (TSHoma)]. Here, we discuss the main pitfalls in the measurement and interpretation of TFTs, and propose a structured algorithm for the investigation and management of patients with anomalous/discordant TFTs.

                Author and article information

                Contributors
                URI : http://frontiersin.org/people/u/470353
                URI : http://frontiersin.org/people/u/470420
                URI : http://frontiersin.org/people/u/470418
                Journal
                Front Endocrinol (Lausanne)
                Front Endocrinol (Lausanne)
                Front. Endocrinol.
                Frontiers in Endocrinology
                Frontiers Media S.A.
                1664-2392
                01 November 2017
                2017
                : 8
                : 297
                Affiliations
                [1] 1Department of Biomedicine, University of Aarhus , Aarhus, Denmark
                [2] 2Department of Molecular Medicine, University of Pavia , Pavia, Italy
                Author notes

                Edited by: Noriyuki Koibuchi, Gunma University, Japan

                Reviewed by: Salvatore Benvenga, University of Messina, Italy; Paul Webb, Houston Methodist Research Institute, United States

                *Correspondence: Ulrich Kragh-Hansen, ukh@ 123456biomed.au.dk

                Specialty section: This article was submitted to Thyroid Endocrinology, a section of the journal Frontiers in Endocrinology

                Article
                10.3389/fendo.2017.00297
                5671950
                29163366
                47f8cb80-0535-464d-b870-f1390bada29d
                Copyright © 2017 Kragh-Hansen, Galliano and Minchiotti.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 24 August 2017
                : 16 October 2017
                Page count
                Figures: 6, Tables: 2, Equations: 0, References: 58, Pages: 10, Words: 7997
                Categories
                Endocrinology
                Review

                Endocrinology & Diabetes
                l-thyroxine,euthyroid hyperthyroxinemia,triiodothyronine,albumin,prevalence,binding sites,mutations

                Comments

                Comment on this article

                Related Documents Log