46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Large‐Scale Gene‐Centric Analysis Identifies Polymorphisms for Resistant Hypertension

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Resistant hypertension (RHTN), defined by lack of blood pressure (BP) control despite treatment with at least 3 antihypertensive drugs, increases cardiovascular risk compared with controlled hypertension. Yet, there are few data on genetic variants associated with RHTN.

          Methods and Results

          We used a gene‐centric array containing ≈50 000 single‐nucleotide polymorphisms (SNPs) to identify polymorphisms associated with RHTN in hypertensive participants with coronary artery disease (CAD) from INVEST‐GENES (the INnternational VErapamil‐SR Trandolapril STudy—GENEtic Substudy). RHTN was defined as BP≥140/90 on 3 drugs, or any BP on 4 or more drugs. Logistic regression analysis was performed in European Americans (n=904) and Hispanics (n=837), using an additive model adjusted for age, gender, randomized treatment assignment, body mass index, principal components for ancestry, and other significant predictors of RHTN. Replication of the top SNP was conducted in 241 European American women from WISE (Women's Ischemia Syndrome Evaluation), where RHTN was defined similarly. To investigate the functional effect of rs12817819, mRNA expression was measured in whole blood. We found ATP2B1 rs12817819 associated with RHTN in both INVEST European Americans ( P‐value=2.44×10 −3, odds ratio=1.57 [1.17 to 2.01]) and INVEST Hispanics ( P=7.69×10 −4, odds ratio=1.76 [1.27 to 2.44]). A consistent trend was observed at rs12817819 in WISE, and the INVEST‐WISE meta‐analysis result reached chip‐wide significance ( P=1.60×10 −6, odds ratio=1.65 [1.36 to 1.95]). Expression analyses revealed significant differences in ATP2B1 expression by rs12817819 genotype.

          Conclusions

          The ATP2B1 rs12817819 A allele is associated with increased risk for RHTN in hypertensive participants with documented CAD or suspected ischemic heart disease.

          Clinical Trial Registration

          URL: www.clinicaltrials.gov; Unique identifiers: NCT00133692 (INVEST), NCT00000554 (WISE).

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A Genome-Wide Association Study Identifies Susceptibility Variants for Type 2 Diabetes in Han Chinese

          Introduction Type 2 diabetes (T2D) affects at least 6% of the world's population; the worldwide prevalence is expected to double by 2025 [1]. T2D is a complex disorder that is characterized by hyperglycemia, which results from impaired pancreatic β cell function, decreased insulin action at target tissues, and increased glucose output by the liver [2]. Both genetic and environmental factors contribute to the pathogenesis of T2D. The disease is considered to be a polygenic disorder in which each genetic variant confers a partial and additive effect. Only 5%–10% of T2D cases are due to single gene defects; these include maturity-onset diabetes of the young (MODY), insulin resistance syndromes, mitochondrial diabetes, and neonatal diabetes [3]–[5]. Inherited variations have been identified from studies of monogenic diabetes, and have provided insights into β cell physiology, insulin release, and the action of insulin on target cells [6]. Much effort has been devoted to finding common T2D genes, including genome-wide linkage, candidate-gene, and genome-wide association studies (GWAS). Whole-genome linkage scans have identified chromosomal regions linked to T2D; however, with the exception of regions 1q [7]–[13] and 20q, which have been repeatedly mapped, linkage results vary from study to study [14]–[19]. Candidate-gene studies have provided strong evidence that common variants in the peroxisome proliferator-activated receptor-r (PPARG) [20], potassium inwardly-rectifying channel J11 (KCNJ11) [21]–[23], transcription factor 2 isoform b (TCF2) [24],[25], and Wolfram syndrome 1 (WFS1) [26] genes are associated with T2D. These genes all have strong biological links to diabetes, and rare, severe mutations cause monogenic diabetes. GWAS have accelerated the identification of T2D susceptibility genes, expanding the list from three in 2006 to over 20 genes in 2009. There are now at least 19 loci containing genes that increase risk of T2D, including PPARG [27], KCNJ11 [27], KCNQ1 [28],[29], CDKAL1 [27],[29]–[33], CDKN2A-2B [27],[32],[33], CDC123-CAMK1D [34], MTNR1B [35]–[37], TCF7L2 [31],[38],[39], TCF2 (HNF1B), HHEX-KIF11-IDE [27],[32],[33],[38], JAZF1 [34], IGF2BP2 [27],[29],[32], SLC30A8 [27],[32],[33],[38], THADA [34], ADAMTS9 [34], WFS1 [26], FTO [27],[31], NOTCH2 [34], and TSPAN8 [34]. Variants in these genes have been identified almost exclusively in populations of European descent, except for KCNQ1; individually, these variants confer a modest risk (odds ratio [OR] = 1.1–1.25) of developing T2D. KCNQ1 was identified as a T2D susceptibility gene in three GWA scans in Japanese individuals, highlighting the need to extend large-scale association efforts to different populations, such as Asian populations [28],[29],[40]. The association of other previously reported loci (CDKAL1, CDKN2A-2B, IGF2BP2, TCF7L2, SLC30A8, HHEX, and KCNJ11) with T2D were also replicated in the Japanese population [29],[40],[41]. To date, a GWA scan for T2D has not been conducted in the Han Chinese population, although the association of some known loci have been confirmed, including KCNQ1 and CDKAL1, CDKN2A-2B, MTNR1B, TCF7L2, HNF1β, and KCNJ11 [42]–[47]. Therefore, we conducted a two-stage GWA scan for T2D in a Han Chinese population residing in Taiwan. There were a total of 2,798 cases and 2,367 normal controls (995 cases and 894 controls in stage 1, 1,803 cases and 1,473 controls in stage 2). Our accomplished objective was to identify new diabetes susceptibility loci that were associated with increased risk of T2D in a Han Chinese population. Results Association analysis We conducted a two-stage GWAS to identify genetic variants for T2D in the Han-Chinese residing in Taiwan. In the first stage, an exploratory genome-wide scan, we genotyped 995 T2D cases and 894 population controls using the Illumina Hap550duov3 chip (Figure 1 and Table S1). For each sample genotyped in this study, the average call rate was 99.92±0.12%. After applying stringent quality control criteria, high-quality genotypes for 516,737 SNPs (92.24%) were obtained, with an average call rate of 99.92±0.24% (Table S2). The results of principal component analysis in stage 1 revealed no evidence for population stratification between T2D cases and controls (P = 0.111, Fst statistics between populations 0.03. We then genotyped the two novel SNPs and one nonsynonymous polymorphism; however, none of these SNPs showed an association with T2D (Table S6). Discussion Our GWAS for T2D in a Han Chinese population found two previously unreported susceptibility genes. All of the significant variants detected in our study showed modest effects, with an OR between 1.21 and 1.57. Two loci with less-significant associations in our primary scan (stage 1), PTPRD and KCNQ1, were selected for further replication; both showed compelling evidence of association in joint analysis. The susceptibility loci we identified in this study need to be further replicated in additional populations. Of the 18 loci previously reported to be associated with T2D (with the exception of KCNQ1), none of the P values for any of the SNPs within or near the genes reached 10−5 using allele, genotype, trend, dominant, or recessive models (Table S8; Figure S4). Three SNPs within CDKAL1, JAZF1, and HNF1B had the lowest P values, ranging from 5×10−4 to 10−5, among the 18 known loci (Table S8). No significant associations were found within these regions in our Han Chinese population. The strongest new signal was observed for rs17584499 in PTPRD. The overall Fst among 11 HapMap groups for rs17584499 was estimated to be 0.068 [52], which indicated a significant difference in allele frequencies among the populations (P 20 years, were recruited from China Medical University Hospital (CMUH), Taichung, Taiwan; Chia-Yi Christian Hospital (CYCH), Chia-Yi, Taiwan; and National Taiwan University Hospital (NTU), Taipei, Taiwan. All of the T2D cases were diagnosed according to medical records and fasting plasma glucose levels using American Diabetic Association Criteria. Subjects with type 1 diabetes, gestational diabetes, and maturity-onset diabetes of the young (MODY) were excluded from this study. For the two-stage GWAS, we genotyped 995 T2D cases and 894 controls in the first exploratory genome-wide scan (stage 1). In the replication stage (stage 2), we genotyped selected SNPs in additional samples from 1,803 T2D cases and 1,473 controls. The controls were randomly selected from the Taiwan Han Chinese Cell and Genome Bank [94]. The criteria for controls in the association study were (1) no past diagnostic history of T2D, (2) HbA1C ranging from 3.4 to 6, and (3) BMI<32. The two control groups were comparable with respect to BMI, gender, age at study, and level of HbA1C. All of the participating T2D cases and controls were of Han Chinese origin, which is the origin of 98% of the Taiwan population. Details of demographic data are shown in Table S10. Genotyping Genomic DNA was extracted from peripheral blood using the Puregene DNA isolation kit (Gentra Systems, Minneapolis, MN, USA). In stage 1, whole genome genotyping using the Illumina HumanHap550-Duo BeadChip was performed by deCODE Genetics (Reykjavík, Iceland). Genotype calling was performed using the standard procedure implemented in BeadStudio (Illumina, Inc., San Diego, CA, USA), with the default parameters suggested by the platform manufacturer. Quality control of genotype data was performed by examining several summary statistics. First, the ratio of loci with heterozygous calls on the X chromosome was calculated to double-check the subject's gender. Total successful call rate and the minor allele frequency of cases and controls were also calculated for each SNP. SNPs were excluded if they: (1) were nonpolymorphic in both cases and controls, (2) had a total call rate <95% in the cases and controls combined, (3) had a minor allele frequency <5% and a total call rate <99% in the cases and controls combined, and (4) had significant distortion from Hardy–Weinberg equilibrium in the controls (P<10−7). Genotyping validation was performed using the Sequenom iPLEX assay (Sequenom MassARRAY system; Sequenom, San Diego, CA, USA). In the replication stage (stage 2), SNPs showing significant or suggestive associations with T2D and their neighboring SNPs within the same LD block were genotyped using the Sequenom iPLEX assay. The neighboring SNPs in the same LD were selected from the HapMap Asian (CHB + JPT) group data for fine mapping the significant signal. Statistical analysis T2D association analysis was carried out to compare allele frequency and genotype distribution between cases and controls using five single-point methods for each SNP: genotype, allele, trend (Cochran–Armitage test), dominant, and recessive models. The most significant test statistic obtained from the five models was chosen. SNPs with P values less than a = 2×10−8, a cut-off for the multiple comparison adjusted by Bonferroni correction, were considered to be significantly associated with the traits. The joint analysis was conducted by combining the data from the stage 1 and 2 samples. We also applied Fisher's method to combine P values for joint analysis. The permutation test was carried out genome-wide for 106 permutations, in which the phenotypes of subjects were randomly rearranged. For better estimation of empirical P values, the top SNPs were reexamined using 108 permutations. Each permutation proceeded as follows: (1) the case and control labels were shuffled and redistributed to subjects, and (2) the test statistics of the corresponding association test was calculated based on the shuffled labels. The empirical P value was defined as the number of permutations that were at least as extreme as the original divided by the total number of permutations. Detection of possible population stratification that might influence association analysis was carried out using principle component analysis, multidimensional scaling analysis, and genomic control (Text S1). Quantile–quantile (Q–Q) plots were then used to examine P value distributions (Figure 3 and Figure S5). 10.1371/journal.pgen.1000847.g003 Figure 3 Q–Q plot for the trend test. Q–Q plots are shown for the trend test based on the 516,212 quality SNPs of the initial analysis of 995 cases and 894 controls. The red lines represent the upper and lower boundaries of the 95% confidence bands. Supporting Information Figure S1 Principle component analysis (PCA) plot. The PCA plot shows the first two principal components, estimated by EIGENSTRAT (Price et al. Nat Genet 38: 904–909), based on genotype data from 76,673 SNPs with equal spacing across the human genome. No population stratification between the 995 T2D cases (green x) and 894 controls (red +) was detected (P = 0.111, and Fst statistics between populations <0.001). (1.18 MB TIF) Click here for additional data file. Figure S2 Multidimensional scaling analysis (MDS) plot. The MDS plot shows the first two principal components, estimated by PLINK (Zheng et al. Am J Hum Genet 81:559–575), based on genotype data from 516,212 SNPs. No population stratification between the 995 T2D cases (red) and 894 controls (blue) was detected (IBS group-difference empirical P = 0.192598 for T1: case/control less similar). (0.74 MB TIF) Click here for additional data file. Figure S3 LD block between rs231361 and rs223787. (0.17 MB TIF) Click here for additional data file. Figure S4 Comparisons to susceptible regions reported by previous GWAS. For each of the (A) NOTCH2, (B) THADA, (C) PPARG, (D) IGF2BP2, (E) ADAMTS9, (F) WFS1, (G) CDKAL1, (H) JAF1, (I) SLC30A8, (J) CDKN2AB, (K) HHEX, (L) CDC123/CAMK1D, (M) TCF7L2, (N) KCNJ11, (O) MTNR1B, (P) TSPAN8/LGR5, (Q) FTO, and (R) TCF (HNF1B) regions, the −log10 P values from the primary scan are plotted as a function of genomic position (NCBI Build 36). The reported SNPs in previous GWAS are denoted by blue diamonds. Estimated recombination rates (right y-axis) based on the Chinese HapMap population are plotted to reflect the local LD structure around the significant SNPs. Gene annotations and numbers of transcripts were taken from NCBI. (4.17 MB TIF) Click here for additional data file. Figure S5 Quantile-quantile (QQ) plots. QQ plots are shown for the four association tests, (A) allelic, (B) genotype, (C) dominant, and (D) recessive, based on the 516,212 quality SNPs of the initial analysis of 995 cases and 894 controls. The upper and lower boundaries of the 95% confidence bands are represented by the red lines. (3.10 MB TIF) Click here for additional data file. Table S1 Quality control of the subject participants in stage 1. (0.03 MB DOC) Click here for additional data file. Table S2 Quality control of the genotyping results. (0.03 MB DOC) Click here for additional data file. Table S3 Association results in stage 1. (0.05 MB DOC) Click here for additional data file. Table S4 Concordance rates for the 10 SNPs with significant associations in stage 1. (0.05 MB DOC) Click here for additional data file. Table S5 Power Calculation using CaTS. (0.05 MB DOC) Click here for additional data file. Table S6 Association of additional SNPs within KCNQ1 in all T2D cases and controls in the joint analysis. (0.06 MB DOC) Click here for additional data file. Table S7 Conditional analysis on rs2237895. (0.03 MB DOC) Click here for additional data file. Table S8 Previously reported loci and SNPs associated with T2D. (0.13 MB DOC) Click here for additional data file. Table S9 Genotype frequency and allele frequency of rs17584499 (founders only) from HapMap3. (0.05 MB DOC) Click here for additional data file. Table S10 Clinical characteristics of the subjects. (0.04 MB DOC) Click here for additional data file. Text S1 Supplementary methods. (0.03 MB DOC) Click here for additional data file.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Large-Scale Gene-Centric Meta-Analysis across 39 Studies Identifies Type 2 Diabetes Loci

            To identify genetic factors contributing to type 2 diabetes (T2D), we performed large-scale meta-analyses by using a custom ∼50,000 SNP genotyping array (the ITMAT-Broad-CARe array) with ∼2000 candidate genes in 39 multiethnic population-based studies, case-control studies, and clinical trials totaling 17,418 cases and 70,298 controls. First, meta-analysis of 25 studies comprising 14,073 cases and 57,489 controls of European descent confirmed eight established T2D loci at genome-wide significance. In silico follow-up analysis of putative association signals found in independent genome-wide association studies (including 8,130 cases and 38,987 controls) performed by the DIAGRAM consortium identified a T2D locus at genome-wide significance (GATAD2A/CILP2/PBX4; p = 5.7 × 10(-9)) and two loci exceeding study-wide significance (SREBF1, and TH/INS; p < 2.4 × 10(-6)). Second, meta-analyses of 1,986 cases and 7,695 controls from eight African-American studies identified study-wide-significant (p = 2.4 × 10(-7)) variants in HMGA2 and replicated variants in TCF7L2 (p = 5.1 × 10(-15)). Third, conditional analysis revealed multiple known and novel independent signals within five T2D-associated genes in samples of European ancestry and within HMGA2 in African-American samples. Fourth, a multiethnic meta-analysis of all 39 studies identified T2D-associated variants in BCL2 (p = 2.1 × 10(-8)). Finally, a composite genetic score of SNPs from new and established T2D signals was significantly associated with increased risk of diabetes in African-American, Hispanic, and Asian populations. In summary, large-scale meta-analysis involving a dense gene-centric approach has uncovered additional loci and variants that contribute to T2D risk and suggests substantial overlap of T2D association signals across multiple ethnic groups. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Women's Ischemia Syndrome Evaluation (WISE) study: protocol design, methodology and feasibility report.

              The Women's Ischemia Syndrome Evaluation (WISE) is a National Heart, Lung and Blood Institute-sponsored, four-center study designed to: 1) optimize symptom evaluation and diagnostic testing for ischemic heart disease; 2) explore mechanisms for symptoms and myocardial ischemia in the absence of epicardial coronary artery stenoses, and 3) evaluate the influence of reproductive hormones on symptoms and diagnostic test response. Accurate diagnosis of ischemic heart disease in women is a major challenge to physicians, and the role reproductive hormones play in this diagnostic uncertainty is unexplored. Moreover, the significance and pathophysiology of ischemia in the absence of significant epicardial coronary stenoses is unknown. The WISE common core data include demographic and clinical data, symptom and psychosocial variables, coronary angiographic and ventriculographic data, brachial artery reactivity testing, resting/ambulatory electrocardiographic monitoring and a variety of blood determinations. Site-specific complementary methods include physiologic and functional cardiovascular assessments of myocardial perfusion and metabolism, ventriculography, endothelial vascular function and coronary angiography. Women are followed for at least 1 year to assess clinical events and symptom status. In Phase I (1996-1997), a pilot phase, 256 women were studied. These data indicate that the WISE protocol is safe and feasible for identifying symptomatic women with and without significant epicardial coronary artery stenoses. The WISE study will define contemporary diagnostic testing to evaluate women with suspected ischemic heart disease. Phase II (1997-1999) is ongoing and will study an additional 680 women, for a total WISE enrollment of 936 women. Phase III (2000) will include patient follow-up, data analysis and a National Institutes of Health WISE workshop.
                Bookmark

                Author and article information

                Journal
                J Am Heart Assoc
                J Am Heart Assoc
                ahaoa
                jah3
                Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease
                Blackwell Publishing Ltd
                2047-9980
                December 2014
                10 November 2014
                : 3
                : 6
                : e001398
                Affiliations
                Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, SP, Brazil (V.F.)
                Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL (C.W.M.D., Y.G., N.M.E.R., A.C.C., J.G.G., J.A.J., R.M.C.D.H.)
                Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute Harbor‐UCLA Medical Center, Torrance, CA (K.D.T., I.C.)
                Department of Community Health and Family Medicine, University of Florida College of Medicine, Gainesville, FL (J.G.G.)
                The Renal Division, Department of Medicine, Emory University, Atlanta, GA (A.B.C.)
                Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN (S.T.T.)
                Division of Cardiovascular Medicine, Department of Medicine, University of Florida, Gainesville, FL (C.J.P., J.A.J., R.M.C.D.H.)
                Author notes
                Correspondence to: Rhonda M. Cooper‐DeHoff, PharmD, MS, Department of Pharmacotherapy and Translational Research and Division of Cardiovascular Medicine, Colleges of Pharmacy and Medicine, Center for Pharmacogenomics, University of Florida, P.O. Box 100486, Gainesville, FL. E‐mail: dehoff@ 123456cop.ufl.edu

                Fontana and Dr McDonough contributed equally to this work.

                Article
                jah3745
                10.1161/JAHA.114.001398
                4338734
                25385345
                481a95c5-3627-4947-943f-5e5224a68dd3
                © 2014 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

                This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

                History
                : 24 September 2014
                : 16 October 2014
                Categories
                Original Research
                Genetics

                Cardiovascular Medicine
                genetics,hypertension,pharmacology,resistant hypertension
                Cardiovascular Medicine
                genetics, hypertension, pharmacology, resistant hypertension

                Comments

                Comment on this article