28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Oxidation During Digestion of Meat: Interactions with the Diet andHelicobacter pyloriGastritis, and Implications on Human Health : Meat consumption and oxidative stress. . .

      , ,
      Comprehensive Reviews in Food Science and Food Safety
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references194

          • Record: found
          • Abstract: found
          • Article: not found

          Red meat consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis.

          The relation between consumption of different types of red meats and risk of type 2 diabetes (T2D) remains uncertain. We evaluated the association between unprocessed and processed red meat consumption and incident T2D in US adults. We followed 37,083 men in the Health Professionals Follow-Up Study (1986-2006), 79,570 women in the Nurses' Health Study I (1980-2008), and 87,504 women in the Nurses' Health Study II (1991-2005). Diet was assessed by validated food-frequency questionnaires, and data were updated every 4 y. Incident T2D was confirmed by a validated supplementary questionnaire. During 4,033,322 person-years of follow-up, we documented 13,759 incident T2D cases. After adjustment for age, BMI, and other lifestyle and dietary risk factors, both unprocessed and processed red meat intakes were positively associated with T2D risk in each cohort (all P-trend <0.001). The pooled HRs (95% CIs) for a one serving/d increase in unprocessed, processed, and total red meat consumption were 1.12 (1.08, 1.16), 1.32 (1.25, 1.40), and 1.14 (1.10, 1.18), respectively. The results were confirmed by a meta-analysis (442,101 participants and 28,228 diabetes cases): the RRs (95% CIs) were 1.19 (1.04, 1.37) and 1.51 (1.25, 1.83) for 100 g unprocessed red meat/d and for 50 g processed red meat/d, respectively. We estimated that substitutions of one serving of nuts, low-fat dairy, and whole grains per day for one serving of red meat per day were associated with a 16-35% lower risk of T2D. Our results suggest that red meat consumption, particularly processed red meat, is associated with an increased risk of T2D.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Protein carbonyls in meat systems: a review.

            Protein oxidation (P-OX) is an innovative topic of increasing interest among meat researchers. Carbonylation is generally recognized as one of the most remarkable chemical modifications in oxidized proteins. In fact, the quantification of protein carbonyls by the dinitrophenylhydrazine (DNPH) method is the most common procedure for assessing P-OX in meat systems. Numerous studies have investigated the occurrence of protein carbonylation right after slaughter and during subsequent processing and cold storage of meat. However, the significance of protein carbonylation in meat systems is still poorly understood. Beyond their role as markers of protein oxidation, specific protein carbonyls such as α-aminoadipic and γ-glutamic semialdehydes (AAS and GGS, respectively) are active compounds that may be implicated in several chemical reactions with relevant consequences on meat quality. The formation of protein carbonyls from particular amino acid side chains contribute to impair the conformation of myofibrillar proteins leading to denaturation and loss of functionality. Recent studies also highlight the potential impact of specific protein carbonyls in particular meat quality traits such as water-holding capacity (WHC), texture, flavor and its nutritional value. As a truly emerging topic, the results from current studies provide grounds from the development of further investigations. The present paper reviews the current knowledge on the mechanisms and consequences of protein carbonylation in meat systems and aims to encourage meat researchers to accomplish further investigations on this fascinating research topic.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Vascular oxidative stress, nitric oxide and atherosclerosis.

              In the vascular wall, reactive oxygen species (ROS) are produced by several enzyme systems including NADPH oxidase, xanthine oxidase, uncoupled endothelial nitric oxide synthase (eNOS) and the mitochondrial electron transport chain. On the other hand, the vasculature is protected by antioxidant enzyme systems, including superoxide dismutases, catalase, glutathione peroxidases and paraoxonases, which detoxify ROS. Cardiovascular risk factors such as hypercholesterolemia, hypertension, and diabetes mellitus enhance ROS generation, resulting in oxidative stress. This leads to oxidative modification of lipoproteins and phospholipids, mechanisms that contribute to atherogenesis. In addition, oxidation of tetrahydrobiopterin may cause eNOS uncoupling and thus potentiation of oxidative stress and reduction of eNOS-derived NO, which is a protective principle in the vasculature. This review summarizes the latest advances in the role of ROS-producing enzymes, antioxidative enzymes as well as NO synthases in the initiation and development of atherosclerosis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Comprehensive Reviews in Food Science and Food Safety
                COMPREHENSIVE REVIEWS IN FOOD SCIENCE AND FOOD SAFETY
                Wiley-Blackwell
                15414337
                March 2017
                March 2017
                : 16
                : 2
                : 214-233
                Article
                10.1111/1541-4337.12248
                33371537
                482d5f45-7ed1-4357-be33-43aa237085f5
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1

                History

                Comments

                Comment on this article