10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inherited retinal diseases: Therapeutics, clinical trials and end points—A review

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references180

          • Record: found
          • Abstract: found
          • Article: not found

          Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies

          The Lancet, 385(9967), 509-516
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Retinitis pigmentosa.

            Hereditary degenerations of the human retina are genetically heterogeneous, with well over 100 genes implicated so far. This Seminar focuses on the subset of diseases called retinitis pigmentosa, in which patients typically lose night vision in adolescence, side vision in young adulthood, and central vision in later life because of progressive loss of rod and cone photoreceptor cells. Measures of retinal function, such as the electroretinogram, show that photoreceptor function is diminished generally many years before symptomic night blindness, visual-field scotomas, or decreased visual acuity arise. More than 45 genes for retinitis pigmentosa have been identified. These genes account for only about 60% of all patients; the remainder have defects in as yet unidentified genes. Findings of controlled trials indicate that nutritional interventions, including vitamin A palmitate and omega-3-rich fish, slow progression of disease in many patients. Imminent treatments for retinitis pigmentosa are greatly anticipated, especially for genetically defined subsets of patients, because of newly identified genes, growing knowledge of affected biochemical pathways, and development of animal models.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Non-syndromic retinitis pigmentosa

              Retinitis pigmentosa (RP) encompasses a group of inherited retinal dystrophies characterized by the primary degeneration of rod and cone photoreceptors. RP is a leading cause of visual disability, with a worldwide prevalence of 1:4000. Although the majority of RP cases are non-syndromic, 20-30% of patients with RP also have an associated non-ocular condition. RP typically manifests with night blindness in adolescence, followed by concentric visual field loss, reflecting the principal dysfunction of rod photoreceptors; central vision loss occurs later in life due to cone dysfunction. Photoreceptor function measured with an electroretinogram is markedly reduced or even absent. Optical coherence tomography (OCT) and fundus autofluorescence (FAF) imaging show a progressive loss of outer retinal layers and altered lipofuscin distribution in a characteristic pattern. Over the past three decades, a vast number of disease-causing variants in more than 80 genes have been associated with non-syndromic RP. The wide heterogeneity of RP makes it challenging to describe the clinical findings and pathogenesis. In this review, we provide a comprehensive overview of the clinical characteristics of RP specific to genetically defined patient subsets. We supply a unique atlas with color fundus photographs of most RP subtypes, and we discuss the relevant considerations with respect to differential diagnoses. In addition, we discuss the genes involved in the pathogenesis of RP, as well as the retinal processes that are affected by pathogenic mutations in these genes. Finally, we review management strategies for patients with RP, including counseling, visual rehabilitation, and current and emerging therapeutic options.
                Bookmark

                Author and article information

                Journal
                Clinical & Experimental Ophthalmology
                Clin Experiment Ophthalmol
                Wiley
                1442-6404
                1442-9071
                April 2021
                March 20 2021
                April 2021
                : 49
                : 3
                : 270-288
                Affiliations
                [1 ]UCL Institute of Ophthalmology University College London London UK
                [2 ]Moorfields Eye Hospital NHS Foundation Trust London UK
                [3 ]Laboratory of Visual Physiology, Division of Vision Research National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center Tokyo Japan
                [4 ]Department of Ophthalmology Keio University School of Medicine Tokyo Japan
                Article
                10.1111/ceo.13917
                33686777
                482db1f4-acd1-4f8c-8b00-44574b1ff4e3
                © 2021

                http://creativecommons.org/licenses/by/4.0/

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article