14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An algorithm for the reconstruction of high-energy neutrino-induced particle showers and its application to the ANTARES neutrino telescope

      The European Physical Journal. C, Particles and Fields
      Springer

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A novel algorithm to reconstruct neutrino-induced particle showers within the ANTARES neutrino telescope is presented. The method achieves a median angular resolution of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$6^\circ $$\end{document} 6 ∘ for shower energies below 100 TeV. Applying this algorithm to 6 years of data taken with the ANTARES detector, 8 events with reconstructed shower energies above 10 TeV are observed. This is consistent with the expectation of about 5 events from atmospheric backgrounds, but also compatible with diffuse astrophysical flux measurements by the IceCube collaboration, from which 2–4 additional events are expected. A \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$90\%$$\end{document} 90 % C.L. upper limit on the diffuse astrophysical neutrino flux with a value per neutrino flavour of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {E}^2\cdot \Phi ^{90\%} = 4.9 \cdot 10^{-8}\,\mathrm {GeV} \cdot \mathrm {cm^{-2} \cdot s^{-1}\cdot sr^{-1}}$$\end{document} E 2 · Φ 90 % = 4.9 · 10 - 8 GeV · cm - 2 · s - 1 · sr - 1 is set, applicable to the energy range from 23 TeV to 7.8 PeV, assuming an unbroken \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {E}^{-2}$$\end{document} E - 2 spectrum and neutrino flavour equipartition at Earth.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A Unified Approach to the Classical Statistical Analysis of Small Signals

          We give a classical confidence belt construction which unifies the treatment of upper confidence limits for null results and two-sided confidence intervals for non-null results. The unified treatment solves a problem (apparently not previously recognized) that the choice of upper limit or two-sided intervals leads to intervals which are not confidence intervals if the choice is based on the data. We apply the construction to two related problems which have recently been a battle-ground between classical and Bayesian statistics: Poisson processes with background, and Gaussian errors with a bounded physical region. In contrast with the usual classical construction for upper limits, our construction avoids unphysical confidence intervals. In contrast with some popular Bayesian intervals, our intervals eliminate conservatism (frequentist coverage greater than the stated confidence) in the Gaussian case and reduce it to a level dictated by discreteness in the Poisson case. We generalize the method in order to apply it to analysis of experiments searching for neutrino oscillations. We show that this technique both gives correct coverage and is powerful, while other classical techniques that have been used by neutrino oscillation search experiments fail one or both of these criteria.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            New Generation of Parton Distributions with Uncertainties from Global QCD Analysis

            A new generation of parton distribution functions with increased precision and quantitative estimates of uncertainties is presented. This work significantly extends previous CTEQ and other global analyses on two fronts: (i) a full treatment of available experimental correlated systematic errors for both new and old data sets; (ii) a systematic and pragmatic treatment of uncertainties of the parton distributions and their physical predictions, using a recently developed eigenvector-basis approach to the Hessian method. The new gluon distribution is considerably harder than that of previous standard fits. A number of physics issues, particularly relating to the behavior of the gluon distribution, are addressed in more quantitative terms than before. Extensive results on the uncertainties of parton distributions at various scales, and on parton luminosity functions at the Tevatron RunII and the LHC, are presented. The latter provide the means to quickly estimate the uncertainties of a wide range of physical processes at these high-energy hadron colliders, based on current knowledge of the parton distributions. In particular, the uncertainties on the production cross sections of the \(W,Z\) at the Tevatron and the LHC are estimated to be \(\pm 4%\) and \(\pm 5%\) respectively, and that of a light Higgs at the LHC to be \(\pm 5%\).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector

              We report on results of an all-sky search for high-energy neutrino events interacting within the IceCube neutrino detector conducted between May 2010 and May 2012. The search follows up on the previous detection of two PeV neutrino events, with improved sensitivity and extended energy coverage down to approximately 30 TeV. Twenty-six additional events were observed, substantially more than expected from atmospheric backgrounds. Combined, both searches reject a purely atmospheric origin for the twenty-eight events at the \(4\sigma\) level. These twenty-eight events, which include the highest energy neutrinos ever observed, have flavors, directions, and energies inconsistent with those expected from the atmospheric muon and neutrino backgrounds. These properties are, however, consistent with generic predictions for an additional component of extraterrestrial origin.
                Bookmark

                Author and article information

                Journal
                5512345
                10.1140/epjc/s10052-017-4979-2
                1703.02432
                http://creativecommons.org/licenses/by/4.0

                Comments

                Comment on this article