2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exploring Eimeria Genomes to Understand Population Biology: Recent Progress and Future Opportunities

      review-article
      1 , * , 2 , 2
      Genes
      MDPI
      Eimeria, genome, genetics, population structure, chickens

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Eimeria, protozoan parasites from the phylum Apicomplexa, can cause the enteric disease coccidiosis in all farmed animals. Coccidiosis is commonly considered to be most significant in poultry; due in part to the vast number of chickens produced in the World each year, their short generation time, and the narrow profit margins associated with their production. Control of Eimeria has long been dominated by routine chemoprophylaxis, but has been supplemented or replaced by live parasite vaccination in a minority of production sectors. However, public and legislative demands for reduced drug use in food production is now driving dramatic change, replacing reliance on relatively indiscriminate anticoccidial drugs with vaccines that are Eimeria species-, and in some examples, strain-specific. Unfortunately, the consequences of deleterious selection on Eimeria population structure and genome evolution incurred by exposure to anticoccidial drugs or vaccines are unclear. Genome sequence assemblies were published in 2014 for all seven Eimeria species that infect chickens, stimulating the first population genetics studies for these economically important parasites. Here, we review current knowledge of eimerian genomes and highlight challenges posed by the discovery of new, genetically cryptic Eimeria operational taxonomic units (OTUs) circulating in chicken populations. As sequencing technologies evolve understanding of eimerian genomes will improve, with notable utility for studies of Eimeria biology, diversity and opportunities for control.

          Related collections

          Most cited references86

          • Record: found
          • Abstract: found
          • Article: not found

          MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms.

          The Molecular Evolutionary Genetics Analysis (Mega) software implements many analytical methods and tools for phylogenomics and phylomedicine. Here, we report a transformation of Mega to enable cross-platform use on Microsoft Windows and Linux operating systems. Mega X does not require virtualization or emulation software and provides a uniform user experience across platforms. Mega X has additionally been upgraded to use multiple computing cores for many molecular evolutionary analyses. Mega X is available in two interfaces (graphical and command line) and can be downloaded from www.megasoftware.net free of charge.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            ToxoDB: an integrated Toxoplasma gondii database resource

            ToxoDB (http://ToxoDB.org) is a genome and functional genomic database for the protozoan parasite Toxoplasma gondii. It incorporates the sequence and annotation of the T. gondii ME49 strain, as well as genome sequences for the GT1, VEG and RH (Chr Ia, Chr Ib) strains. Sequence information is integrated with various other genomic-scale data, including community annotation, ESTs, gene expression and proteomics data. ToxoDB has matured significantly since its initial release. Here we outline the numerous updates with respect to the data and increased functionality available on the website.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Re-calculating the cost of coccidiosis in chickens

              Coccidiosis, caused by Eimeria species parasites, has long been recognised as an economically significant disease of chickens. As the global chicken population continues to grow, and its contribution to food security intensifies, it is increasingly important to assess the impact of diseases that compromise chicken productivity and welfare. In 1999, Williams published one of the most comprehensive estimates for the cost of coccidiosis in chickens, featuring a compartmentalised model for the costs of prophylaxis, treatment and losses, indicating a total cost in excess of £38 million in the United Kingdom (UK) in 1995. In the 25 years since this analysis the global chicken population has doubled and systems of chicken meat and egg production have advanced through improved nutrition, husbandry and selective breeding of chickens, and wider use of anticoccidial vaccines. Using data from industry representatives including veterinarians, farmers, production and health experts, we have updated the Williams model and estimate that coccidiosis in chickens cost the UK £99.2 million in 2016 (range £73.0–£125.5 million). Applying the model to data from Brazil, Egypt, Guatemala, India, New Zealand, Nigeria and the United States resulted in estimates that, when extrapolated by geographical region, indicate a global cost of ~ £10.4 billion at 2016 prices (£7.7–£13.0 billion), equivalent to £0.16/chicken produced. Understanding the economic costs of livestock diseases can be advantageous, providing baselines to evaluate the impact of different husbandry systems and interventions. The updated cost of coccidiosis in chickens will inform debates on the value of chemoprophylaxis and development of novel anticoccidial vaccines.
                Bookmark

                Author and article information

                Journal
                Genes (Basel)
                Genes (Basel)
                genes
                Genes
                MDPI
                2073-4425
                21 September 2020
                September 2020
                : 11
                : 9
                : 1103
                Affiliations
                [1 ]Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead Lane, North Mymms AL9 7TA, UK
                [2 ]Animal Parasitic Diseases Laboratory, Building 1040, Agricultural Research Service, USDA, Beltsville, MD 20705, USA; kate.worthing@ 123456usda.gov (K.W.); mark.jenkins@ 123456usda.gov (M.C.J.)
                Author notes
                [* ]Correspondence: dblake@ 123456rvc.ac.uk
                Author information
                https://orcid.org/0000-0003-1077-2306
                Article
                genes-11-01103
                10.3390/genes11091103
                7564333
                32967167
                4851662d-0826-43ab-a5be-cb5001effd86
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 26 August 2020
                : 18 September 2020
                Categories
                Review

                eimeria,genome,genetics,population structure,chickens
                eimeria, genome, genetics, population structure, chickens

                Comments

                Comment on this article