9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparative Genomic Analysis and Characterization of Two Salmonella enterica Serovar Enteritidis Isolates From Poultry With Notably Different Survival Abilities in Egg Whites

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Salmonella enterica serovar Enteritidis ( Salmonella Enteritidis) is a globally important foodborne pathogen, and the contaminated chicken eggs are the major source of salmonellosis in humans. Salmonella Enteritidis strains are differentially susceptible to the hostile environment of egg whites. Strains with superior survival ability in egg whites are more likely to contaminate eggs and consequently infect humans. However, the genetic basis for this phenotype is unclear. We characterized two Salmonella Enteritidis strains isolated from chicken meat that had similar genetic backgrounds but large differences in survival ability in egg whites. Although genome comparisons indicated that the gene content and genomic synteny were highly conserved, variations including six insertions or deletions (INDELs) and 70 single nucleotide polymorphisms (SNPs) were observed between the two genomes. Of these, 38 variations including four INDELs and 34 non-synonymous SNPs (nsSNP) were annotated to result in amino acid substitutions or INDELs in coding proteins. These variations were located in 38 genes involved in lysozyme inhibition, vitamin biosynthesis, cell division and DNA damage response, osmotic and oxidative protection, iron-related functions, cell envelope maintenance, amino acid and carbohydrate metabolism, antimicrobial resistance, and type III secretion system. We carried out allelic replacements for two nsSNPs in bioC (biotin synthesis) and pliC (lysozyme inhibition), and two INDELs in ftsK and yqiJ (DNA damage response) by homologous recombination, and these replacements did not alter the bacterial survival ability in egg whites. However, the bacterial survival ability in egg whites was reduced when deletion mutation of the genes bioC and pliC occurred. This study provides initial correlations between observed genotypes and phenotypes and serves as an important caveat for further functional studies.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: not found

          Salmonella serotype determination utilizing high-throughput genome sequencing data.

          Serotyping forms the basis of national and international surveillance networks for Salmonella, one of the most prevalent foodborne pathogens worldwide (1-3). Public health microbiology is currently being transformed by whole-genome sequencing (WGS), which opens the door to serotype determination using WGS data. SeqSero (www.denglab.info/SeqSero) is a novel Web-based tool for determining Salmonella serotypes using high-throughput genome sequencing data. SeqSero is based on curated databases of Salmonella serotype determinants (rfb gene cluster, fliC and fljB alleles) and is predicted to determine serotype rapidly and accurately for nearly the full spectrum of Salmonella serotypes (more than 2,300 serotypes), from both raw sequencing reads and genome assemblies. The performance of SeqSero was evaluated by testing (i) raw reads from genomes of 308 Salmonella isolates of known serotype; (ii) raw reads from genomes of 3,306 Salmonella isolates sequenced and made publicly available by GenomeTrakr, a U.S. national monitoring network operated by the Food and Drug Administration; and (iii) 354 other publicly available draft or complete Salmonella genomes. We also demonstrated Salmonella serotype determination from raw sequencing reads of fecal metagenomes from mice orally infected with this pathogen. SeqSero can help to maintain the well-established utility of Salmonella serotyping when integrated into a platform of WGS-based pathogen subtyping and characterization.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanisms of egg contamination by Salmonella Enteritidis.

            Salmonella Enteritidis (SE) has been the major cause of the food-borne salmonellosis pandemic in humans over the last 20 years, during which contaminated hen's eggs were the most important vehicle of the infection. Eggs can be contaminated on the outer shell surface and internally. Internal contamination can be the result of penetration through the eggshell or by direct contamination of egg contents before oviposition, originating from infection of the reproductive organs. Once inside the egg, the bacteria need to cope with antimicrobial factors in the albumen and vitelline membrane before migration to the yolk can occur. It would seem that serotype Enteritidis has intrinsic characteristics that allow an epidemiological association with hen eggs that are still undefined. There are indications that SE survives the attacks with the help of antimicrobial molecules during the formation of the egg in the hen's oviduct and inside the egg. This appears to require a unique combination of genes encoding for improved cell wall protection and repairing cellular and molecular damage, among others.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica that cause typhoid.

              Salmonella enterica serovars often have a broad host range, and some cause both gastrointestinal and systemic disease. But the serovars Paratyphi A and Typhi are restricted to humans and cause only systemic disease. It has been estimated that Typhi arose in the last few thousand years. The sequence and microarray analysis of the Paratyphi A genome indicates that it is similar to the Typhi genome but suggests that it has a more recent evolutionary origin. Both genomes have independently accumulated many pseudogenes among their approximately 4,400 protein coding sequences: 173 in Paratyphi A and approximately 210 in Typhi. The recent convergence of these two similar genomes on a similar phenotype is subtly reflected in their genotypes: only 30 genes are degraded in both serovars. Nevertheless, these 30 genes include three known to be important in gastroenteritis, which does not occur in these serovars, and four for Salmonella-translocated effectors, which are normally secreted into host cells to subvert host functions. Loss of function also occurs by mutation in different genes in the same pathway (e.g., in chemotaxis and in the production of fimbriae).
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                07 September 2018
                2018
                : 9
                : 2111
                Affiliations
                [1] 1MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University , Shanghai, China
                [2] 2School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai, China
                [3] 3Department of Microbiology, Shanghai Center for Disease Control and Prevention , Shanghai, China
                Author notes

                Edited by: Qingli Dong, University of Shanghai for Science and Technology, China

                Reviewed by: Xiaohui Zhou, University of Connecticut, United States; Luis Carlos Guimarães, Universidade Federal do Pará, Brazil

                *Correspondence: Xianming Shi, xmshi@ 123456sjtu.edu.cn

                This article was submitted to Food Microbiology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2018.02111
                6137255
                29445369
                4852ed20-178a-47f7-a9e3-026e5e58a30f
                Copyright © 2018 Wang, Jia, Xu, Zhang, Wei, Ou, Cui, Shi and Shi.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 20 April 2018
                : 20 August 2018
                Page count
                Figures: 3, Tables: 3, Equations: 0, References: 107, Pages: 14, Words: 0
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                salmonella enteritidis,egg white,genome sequencing,genome comparison,survival

                Comments

                Comment on this article