6
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pitfalls and Remedies for Cross Validation with Multi-trait Genomic Prediction Methods

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Incorporating measurements on correlated traits into genomic prediction models can increase prediction accuracy and selection gain. However, multi-trait genomic prediction models are complex and prone to overfitting which may result in a loss of prediction accuracy relative to single-trait genomic prediction. Cross-validation is considered the gold standard method for selecting and tuning models for genomic prediction in both plant and animal breeding. When used appropriately, cross-validation gives an accurate estimate of the prediction accuracy of a genomic prediction model, and can effectively choose among disparate models based on their expected performance in real data. However, we show that a naive cross-validation strategy applied to the multi-trait prediction problem can be severely biased and lead to sub-optimal choices between single and multi-trait models when secondary traits are used to aid in the prediction of focal traits and these secondary traits are measured on the individuals to be tested. We use simulations to demonstrate the extent of the problem and propose three partial solutions: 1) a parametric solution from selection index theory, 2) a semi-parametric method for correcting the cross-validation estimates of prediction accuracy, and 3) a fully non-parametric method which we call CV2*: validating model predictions against focal trait measurements from genetically related individuals. The current excitement over high-throughput phenotyping suggests that more comprehensive phenotype measurements will be useful for accelerating breeding programs. Using an appropriate cross-validation strategy should more reliably determine if and when combining information across multiple traits is useful.

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: found

          Genomic prediction in animals and plants: simulation of data, validation, reporting, and benchmarking.

          The genomic prediction of phenotypes and breeding values in animals and plants has developed rapidly into its own research field. Results of genomic prediction studies are often difficult to compare because data simulation varies, real or simulated data are not fully described, and not all relevant results are reported. In addition, some new methods have been compared only in limited genetic architectures, leading to potentially misleading conclusions. In this article we review simulation procedures, discuss validation and reporting of results, and apply benchmark procedures for a variety of genomic prediction methods in simulated and real example data. Plant and animal breeding programs are being transformed by the use of genomic data, which are becoming widely available and cost-effective to predict genetic merit. A large number of genomic prediction studies have been published using both simulated and real data. The relative novelty of this area of research has made the development of scientific conventions difficult with regard to description of the real data, simulation of genomes, validation and reporting of results, and forward in time methods. In this review article we discuss the generation of simulated genotype and phenotype data, using approaches such as the coalescent and forward in time simulation. We outline ways to validate simulated data and genomic prediction results, including cross-validation. The accuracy and bias of genomic prediction are highlighted as performance indicators that should be reported. We suggest that a measure of relatedness between the reference and validation individuals be reported, as its impact on the accuracy of genomic prediction is substantial. A large number of methods were compared in example simulated and real (pine and wheat) data sets, all of which are publicly available. In our limited simulations, most methods performed similarly in traits with a large number of quantitative trait loci (QTL), whereas in traits with fewer QTL variable selection did have some advantages. In the real data sets examined here all methods had very similar accuracies. We conclude that no single method can serve as a benchmark for genomic prediction. We recommend comparing accuracy and bias of new methods to results from genomic best linear prediction and a variable selection approach (e.g., BayesB), because, together, these methods are appropriate for a range of genetic architectures. An accompanying article in this issue provides a comprehensive review of genomic prediction methods and discusses a selection of topics related to application of genomic prediction in plants and animals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Accuracy of multi-trait genomic selection using different methods

            Background Genomic selection has become a very important tool in animal genetics and is rapidly emerging in plant genetics. It holds the promise to be particularly beneficial to select for traits that are difficult or expensive to measure, such as traits that are measured in one environment and selected for in another environment. The objective of this paper was to develop three models that would permit multi-trait genomic selection by combining scarcely recorded traits with genetically correlated indicator traits, and to compare their performance to single-trait models, using simulated datasets. Methods Three (SNP) Single Nucleotide Polymorphism based models were used. Model G and BCπ0 assumed that contributed (co)variances of all SNP are equal. Model BSSVS sampled SNP effects from a distribution with large (or small) effects to model SNP that are (or not) associated with a quantitative trait locus. For reasons of comparison, model A including pedigree but not SNP information was fitted as well. Results In terms of accuracies for animals without phenotypes, the models generally ranked as follows: BSSVS > BCπ0 > G > > A. Using multi-trait SNP-based models, the accuracy for juvenile animals without any phenotypes increased up to 0.10. For animals with phenotypes on an indicator trait only, accuracy increased up to 0.03 and 0.14, for genetic correlations with the evaluated trait of 0.25 and 0.75, respectively. Conclusions When the indicator trait had a genetic correlation lower than 0.5 with the trait of interest in our simulated data, the accuracy was higher if genotypes rather than phenotypes were obtained for the indicator trait. However, when genetic correlations were higher than 0.5, using an indicator trait led to higher accuracies for selection candidates. For different combinations of traits, the level of genetic correlation below which genotyping selection candidates is more effective than obtaining phenotypes for an indicator trait, needs to be derived considering at least the heritabilities and the numbers of animals recorded for the traits involved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Semi-parametric estimates of population accuracy and bias of predictions of breeding values and future phenotypes using the LR method

              Background Cross-validation tools are used increasingly to validate and compare genetic evaluation methods but analytical properties of cross-validation methods are rarely described. There is also a lack of cross-validation tools for complex problems such as prediction of indirect effects (e.g. maternal effects) or for breeding schemes with small progeny group sizes. Results We derive the expected value of several quadratic forms by comparing genetic evaluations including “partial” and “whole” data. We propose statistics that compare genetic evaluations including “partial” and “whole” data based on differences in means, covariance, and correlation, and term the use of these statistics “method LR” (from linear regression). Contrary to common belief, the regression of true on estimated breeding values is (on expectation) lower than 1 for small or related validation sets, due to family structures. For validation sets that are sufficiently large, we show that these statistics yield estimators of bias, slope or dispersion, and population accuracy for estimated breeding values. Similar results hold for prediction of future phenotypes although we show that estimates of bias, slope or dispersion using prediction of future phenotypes are sensitive to incorrect heritabilities or precorrection for fixed effects. We present an example for a set of 2111 Brahman beef cattle for which, in repeated partitioning of the data into training and validation sets, there is very good agreement of statistics of method LR with prediction of future phenotypes. Conclusions Analytical properties of cross-validation measures are presented. We present a new method named LR for cross-validation that is automatic, easy to use, and which yields the quantities of interest. The method compares predictions based on partial and whole data, which results in estimates of accuracy and biases. Prediction of observed records may yield biased results due to precorrection or use of incorrect heritabilities. Electronic supplementary material The online version of this article (10.1186/s12711-018-0426-6) contains supplementary material, which is available to authorized users.
                Bookmark

                Author and article information

                Journal
                G3 (Bethesda)
                Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes|Genomes|Genetics
                Genetics Society of America
                2160-1836
                11 September 2019
                November 2019
                : 9
                : 11
                : 3727-3741
                Affiliations
                [* ]Department of Plant Sciences and
                []Department of Animal Science, University of California Davis, Davis, CA 95616
                Author notes
                [1 ]Corresponding author: One Shield Ave, Davis, CA 95616. E-mail: deruncie@ 123456ucdavis.edu
                Author information
                http://orcid.org/0000-0002-3008-9312
                http://orcid.org/0000-0001-5146-7231
                Article
                GGG_400598
                10.1534/g3.119.400598
                6829121
                31511297
                486a995d-480e-48cb-b516-565497e0e12f
                Copyright © 2019 Runcie, Cheng

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 02 August 2019
                : 10 September 2019
                Page count
                Figures: 6, Tables: 0, Equations: 40, References: 30, Pages: 15
                Categories
                Genomic Prediction

                Genetics
                cross validation,genomic prediction,linear mixed model,multi-trait,genpred,shared data resources

                Comments

                Comment on this article