0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Prediction Liquidated Damages via Ensemble Machine Learning Model: Towards Sustainable Highway Construction Projects

      , , , , ,
      Sustainability
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Highway construction projects are important for financial and social development in the United States. Such types of construction are usually accompanied by construction delay, causing liquidated damages (LDs) as a contractual provision are vital in construction agreements. Accurate quantification of LDs is essential for contract parties to avoid legal disputes and unfair provisions due to the lack of appropriate documentation. This paper effort sought to develop an ensemble machine learning technique (EMLT) that combines algorithms of the Extreme Gradient Boosting (XGBoost), Categorical Boosting (CatBoost), k-Nearest Neighbor (kNN), Light Gradient Boosting Machine (LightGBM), Artificial Neural Network (ANN), and Decision Tree (DT) for the prediction of LDs in highway construction projects. Key attributes are identified and examined to predict the interrelated correlations among the influential features to develop accurate forecast models to assess the impact of each delay factor. Various machine-learning-based models were developed, where the different modeling outputs were analyzed and compared. Four performance matrices such as Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Coefficient of Determination (R2) were used to assess and evaluate the accuracy of the implemented machine learning (ML) algorithms. The prediction outputs implied that the developed EMLT model has shown better performance compared to other ML-based models, where it has the highest accuracy of 0.997, compared to the DT, kNN, CatBoost, XGBoost, LightGBM, and ANN with an accuracy of 0.989, 0.988, 0.986, 0.975, 0.873, and 0.689, respectively. Thus, the findings of this research designate that the EMLT model can be used as an effective administrative decision adding tool for forecasting the LDs. As a result, this paper emphasizes ML’s potential to aid in the advancement of computerization as a comprehensible subject of investigation within highway building projects.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: not found
          • Conference Proceedings: not found

          XGBoost

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Greedy function approximation: A gradient boosting machine.

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                SUSTDE
                Sustainability
                Sustainability
                MDPI AG
                2071-1050
                August 2022
                July 29 2022
                : 14
                : 15
                : 9303
                Article
                10.3390/su14159303
                486e24db-3f25-48ca-a35a-229c6113694d
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History
                Product
                Self URI (article page): https://www.mdpi.com/2071-1050/14/15/9303

                Comments

                Comment on this article