Given the long-term and severe distress experienced during breast cancer treatment, detecting depression among breast cancer patients is clinically crucial. This study aimed to explore a machine-learning model using self-report questionnaires to screen for depression in patients with breast cancer.
A total of 327 patients who visited the breast cancer clinic were included in this study. Depressive symptoms were measured using the Patient Health Questionnaire-9 (PHQ-9), Beck Depression Inventory (BDI), and Hospital Anxiety and Depression Scale (HADS). The depression was evaluated according to the Diagnostic and Statistical Manual of Mental Disorders 5th edition. The prediction model’s performance based on supervised machine learning was conducted using MATLAB2022.
The BDI showed an area under the curve (AUC) of 0.785 when using the logistic regression (LR) classifier. The HADS and PHQ-9 showed an AUC of 0.784 and 0.756 when using the linear discriminant analysis, respectively. The combinations of BDI and HADS showed an AUC of 0.812 when using the LR. The combinations of PHQ-9, BDI, and HADS showed an AUC of 0.807 when using LR.