36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      PKA Phosphorylation Dissociates FKBP12.6 from the Calcium Release Channel (Ryanodine Receptor)

      , , , , , ,
      Cell
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure.

          Hemodynamics, plasma norepinephrine, and plasma renin activity were measured at supine rest in 106 patients (83 men and 23 women) with moderate to severe congestive heart failure. During follow-up lasting 1 to 62 months, 60 patients died (57 per cent); 47 per cent of the deaths were sudden, and 45 per cent were related to progressive heart failure. Statistically unrelated to the risk of mortality were cause of disease (60 patients had coronary disease, and 46 had cardiomyopathy), age (mean, 54.8 years), cardiac index (mean, 2.11 liters per minute per square meter of body-surface area), pulmonary wedge pressure (mean, 24.5 mm Hg), and mean arterial pressure (mean, 83.2 mm Hg). A multivariate analysis of the five significant univariate prognosticators--heart rate (mean, 84.4 beats per minute), plasma renin activity (mean, 15.4 ng per milliliter per hour), plasma norepinephrine (mean, 700 pg per milliliter), serum sodium (mean, 135.7 mmol per liter), and stroke-work index (mean, 21.0 g-meters per square meter)--found only plasma norepinephrine to be independently (P = 0.002) related to the subsequent risk of mortality. Norepinephrine was also higher in patients who died from progressive heart failure than in those who died suddenly. These data suggest that a single resting venous blood sample showing the plasma norepinephrine concentration provides a better guide to prognosis than other commonly measured indexes of cardiac performance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts.

            To identify the role of the myocardial beta-adrenergic pathway in congestive heart failure, we examined beta-adrenergic-receptor density, adenylate cyclase and creatine kinase activities, muscle contraction in vitro, and myocardial contractile protein levels in the left ventricles of failing and normally functioning hearts from cardiac-transplant recipients or prospective donors. Eleven failing left ventricles had a 50 to 56 per cent reduction in beta-receptor density, a 45 per cent reduction in maximal isoproterenol-mediated adenylate cyclase stimulation, and a 54 to 73 per cent reduction in maximal isoproterenol-stimulated muscle contraction, as compared with six normally functioning ventricles (P less than 0.05 for each comparison). In contrast, cytoplasmic creatine kinase activity, adenylate cyclase activities stimulated by fluoride ion and by histamine, histamine-stimulated muscle contraction, and levels of contractile protein were not different in the two groups (P less than 0.05). We conclude that in failing human hearts a decrease in beta-receptor density leads to subsensitivity of the beta-adrenergic pathway and decreased beta-agonist-stimulated muscle contraction. Regulation of beta-adrenergic receptors may be an important variable in cardiac failure.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Defective excitation-contraction coupling in experimental cardiac hypertrophy and heart failure.

              Cardiac hypertrophy and heart failure caused by high blood pressure were studied in single myocytes taken from hypertensive rats (Dahl SS/Jr) and SH-HF rats in heart failure. Confocal microscopy and patch-clamp methods were used to examine excitation-contraction (EC) coupling, and the relation between the plasma membrane calcium current (ICa) and evoked calcium release from the sarcoplasmic reticulum (SR), which was visualized as "calcium sparks." The ability of ICa to trigger calcium release from the SR in both hypertrophied and failing hearts was reduced. Because ICa density and SR calcium-release channels were normal, the defect appears to reside in a change in the relation between SR calcium-release channels and sarcolemmal calcium channels. beta-Adrenergic stimulation largely overcame the defect in hypertrophic but not failing heart cells. Thus, the same defect in EC coupling that develops during hypertrophy may contribute to heart failure when compensatory mechanisms fail.
                Bookmark

                Author and article information

                Journal
                Cell
                Cell
                Elsevier BV
                00928674
                May 2000
                May 2000
                : 101
                : 4
                : 365-376
                Article
                10.1016/S0092-8674(00)80847-8
                10830164
                4890b913-bc09-4f46-bb9b-efe465d7b58c
                © 2000

                http://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article