7
views
0
recommends
+1 Recommend
2 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      25-Hydroxylase vitamin D deficiency in 27 Saudi Arabian subjects: a clinical and molecular report on CYP2R1 mutations

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vitamin D deficiency remains a major cause of rickets worldwide. Nutritional factors are the major cause and less commonly, inheritance causes. Recently, CYP2R1 has been reported as a major factor for 25-hydroxylation contributing to the inherited forms of vitamin D deficiency. We conducted a prospective cohort study at King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia, to review cases with 25-hydroxylase deficiency and describe their clinical, biochemical, and molecular genetic features. We analyzed 27 patients from nine different families who presented with low 25-OH vitamin D and not responding to usual treatment. Genetic testing identified two mutations: c.367+1G>A (12/27 patients) and c.768dupT (15/27 patients), where 18 patients were homozygous for their identified mutation and 9 patients were heterozygous. Both groups had similar clinical manifestations ranging in severity, but none of the patients with the heterozygous mutation had hypocalcemic manifestations. Thirteen out of 18 homozygous patients and all the heterozygous patients responded to high doses of vitamin D treatment, but they regressed after decreasing the dose, requiring lifelong therapy. Five out of 18 homozygous patients required calcitriol to improve their biochemical data, whereas none of the heterozygous patients and patients who carried the c.367+1G>A mutation required calcitriol treatment. To date, this is the largest cohort series analyzing CYP2R1-related 25-hydroxylase deficiency worldwide, supporting its major role in 25-hydroxylation of vitamin D. It is suggested that a higher percentage of CYP2R1 mutations might be found in the Saudi population. We believe that our study will help in the diagnosis, treatment, and prevention of similar cases in the future.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline.

          The objective was to provide guidelines to clinicians for the evaluation, treatment, and prevention of vitamin D deficiency with an emphasis on the care of patients who are at risk for deficiency. The Task Force was composed of a Chair, six additional experts, and a methodologist. The Task Force received no corporate funding or remuneration. Consensus was guided by systematic reviews of evidence and discussions during several conference calls and e-mail communications. The draft prepared by the Task Force was reviewed successively by The Endocrine Society's Clinical Guidelines Subcommittee, Clinical Affairs Core Committee, and cosponsoring associations, and it was posted on The Endocrine Society web site for member review. At each stage of review, the Task Force received written comments and incorporated needed changes. Considering that vitamin D deficiency is very common in all age groups and that few foods contain vitamin D, the Task Force recommended supplementation at suggested daily intake and tolerable upper limit levels, depending on age and clinical circumstances. The Task Force also suggested the measurement of serum 25-hydroxyvitamin D level by a reliable assay as the initial diagnostic test in patients at risk for deficiency. Treatment with either vitamin D(2) or vitamin D(3) was recommended for deficient patients. At the present time, there is not sufficient evidence to recommend screening individuals who are not at risk for deficiency or to prescribe vitamin D to attain the noncalcemic benefit for cardiovascular protection.
            • Record: found
            • Abstract: found
            • Article: not found

            CYP2R1 is a major, but not exclusive, contributor to 25-hydroxyvitamin D production in vivo.

            Bioactivation of vitamin D consists of two sequential hydroxylation steps to produce 1α,25-dihydroxyvitamin D3. It is clear that the second or 1α-hydroxylation step is carried out by a single enzyme, 25-hydroxyvitamin D 1α-hydroxylase CYP27B1. However, it is not certain what enzyme or enzymes are responsible for the initial 25-hydroxylation. An excellent case has been made for vitamin D 25-hydroxylase CYP2R1, but this hypothesis has not yet been tested. We have now produced Cyp2r1 (-/-) mice. These mice had greater than 50% reduction in serum 25-hydroxyvitamin D3. Curiously, the 1α,25-dihydroxyvitamin D3 level in the serum remained unchanged. These mice presented no health issues. A double knockout of Cyp2r1 and Cyp27a1 maintained a similar circulating level of 25-hydroxyvitamin D3 and 1α,25-dihydroxyvitamin D3. Our results support the idea that the CYP2R1 is the major enzyme responsible for 25-hydroxylation of vitamin D, but clearly a second, as-yet unknown, enzyme is another contributor to this important step in vitamin D activation.
              • Record: found
              • Abstract: found
              • Article: not found

              Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase.

              The synthesis of bioactive vitamin D requires hydroxylation at the 1 alpha and 25 positions by cytochrome P450 enzymes in the kidney and liver, respectively. The mitochondrial enzyme CYP27B1 catalyzes 1 alpha-hydroxylation in the kidney but the identity of the hepatic 25-hydroxylase has remained unclear for >30 years. We previously identified the microsomal CYP2R1 protein as a potential candidate for the liver vitamin D 25-hydroxylase based on the enzyme's biochemical properties, conservation, and expression pattern. Here, we report a molecular analysis of a patient with low circulating levels of 25-hydroxyvitamin D and classic symptoms of vitamin D deficiency. This individual was found to be homozygous for a transition mutation in exon 2 of the CYP2R1 gene on chromosome 11p15.2. The inherited mutation caused the substitution of a proline for an evolutionarily conserved leucine at amino acid 99 in the CYP2R1 protein and eliminated vitamin D 25-hydroxylase enzyme activity. These data identify CYP2R1 as a biologically relevant vitamin D 25-hydroxylase and reveal the molecular basis of a human genetic disease, selective 25-hydroxyvitamin D deficiency.

                Author and article information

                Journal
                Endocr Connect
                Endocr Connect
                EC
                Endocrine Connections
                Bioscientifica Ltd (Bristol )
                2049-3614
                16 June 2021
                01 July 2021
                : 10
                : 7
                : 767-775
                Affiliations
                [1 ]Department of Pediatrics , King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
                [2 ]Centre for Genomic Medicine , King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
                [3 ]Department of Biostatistics , Epidemiology & Scientific Computing, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
                [4 ]Department of Medicine , King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
                [5 ]Department of Orthopedics , King Saud University Medical City, Riyadh, Saudi Arabia
                Author notes
                Correspondence should be addressed to A AlSagheir: asagheir@ 123456kfshrc.edu.sa
                Article
                EC-21-0102
                10.1530/EC-21-0102
                8346186
                34137732
                489aa192-32ea-47f8-ac3d-5bf0ae0427b5
                © The authors

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

                History
                : 20 April 2021
                : 16 June 2021
                Categories
                Research

                vitamin d,cyp2r1 mutation,25-hydroxylase deficiency,rickets,saudi arabia

                Comments

                Comment on this article

                Related Documents Log