26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Initial-Dip Existence and Estimation in Relation to DPF and Data Drift

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Early de-oxygenation (initial dip) is an indicator of the primal cortical activity source in functional neuro-imaging. In this study, initial dip's existence and its estimation in relation to the differential pathlength factor (DPF) and data drift were investigated in detail. An efficient algorithm for estimation of drift in fNIRS data is proposed. The results favor the shifting of the fNIRS signal to a transformed coordinate system to infer correct information. Additionally, in this study, the effect of the DPF on initial dip was comprehensively analyzed. Four different cases of initial dip existence were treated, and the resultant characteristics of the hemodynamic response function (HRF) for DPF variation corresponding to particular near-infrared (NIR) wavelengths were summarized. A unique neuro-activation model and its iterative optimization solution that can estimate drift in fNIRS data and determine the best possible fit of HRF with free parameters were developed and herein proposed. The results were verified on simulated data sets. The algorithm is applied to free available datasets in addition to six healthy subjects those were experimented using fNIRS and observations and analysis regarding shape of HRF were summarized as well. A comparison with standard GLM is also discussed and effects of activity strength parameters have also been analyzed.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: not found
          • Article: not found

          Convergence Properties of the Nelder--Mead Simplex Method in Low Dimensions

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Functional near infrared spectroscopy (NIRS) signal improvement based on negative correlation between oxygenated and deoxygenated hemoglobin dynamics.

            Near infrared spectroscopy (NIRS) is a promising technology for functional brain imaging which measures hemodynamic signals from the cortex, similar to functional magnetic resonance imaging (fMRI), but does not require the participant to lie motionless in a confined space. NIRS can therefore be used for more naturalistic experiments, including face to face communication, or natural body movements, and is well suited for real-time applications that may require lengthy training. However, improving signal quality and reducing noise, especially noise induced by head motion, is challenging, particularly for real time applications. Here we study the properties of head motion induced noise, and find that motion noise causes the measured oxygenated and deoxygenated hemoglobin signals, which are typically strongly negatively correlated, to become more positively correlated. Next, we develop a method to reduce noise based on the principle that the concentration changes of oxygenated and deoxygenated hemoglobin should be negatively correlated. We show that despite its simplicity, this method is effective in reducing noise and improving signal quality, for both online and offline noise reduction. Copyright 2009 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Modeling the hemodynamic response to brain activation.

              Neural activity in the brain is accompanied by changes in cerebral blood flow (CBF) and blood oxygenation that are detectable with functional magnetic resonance imaging (fMRI) techniques. In this paper, recent mathematical models of this hemodynamic response are reviewed and integrated. Models are described for: (1) the blood oxygenation level dependent (BOLD) signal as a function of changes in cerebral oxygen extraction fraction (E) and cerebral blood volume (CBV); (2) the balloon model, proposed to describe the transient dynamics of CBV and deoxy-hemoglobin (Hb) and how they affect the BOLD signal; (3) neurovascular coupling, relating the responses in CBF and cerebral metabolic rate of oxygen (CMRO(2)) to the neural activity response; and (4) a simple model for the temporal nonlinearity of the neural response itself. These models are integrated into a mathematical framework describing the steps linking a stimulus to the measured BOLD and CBF responses. Experimental results examining transient features of the BOLD response (post-stimulus undershoot and initial dip), nonlinearities of the hemodynamic response, and the role of the physiologic baseline state in altering the BOLD signal are discussed in the context of the proposed models. Quantitative modeling of the hemodynamic response, when combined with experimental data measuring both the BOLD and CBF responses, makes possible a more specific and quantitative assessment of brain physiology than is possible with standard BOLD imaging alone. This approach has the potential to enhance numerous studies of brain function in development, health, and disease.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neuroinform
                Front Neuroinform
                Front. Neuroinform.
                Frontiers in Neuroinformatics
                Frontiers Media S.A.
                1662-5196
                11 December 2018
                2018
                : 12
                : 96
                Affiliations
                Department of Opto-Mechatronics Engineering, Pusan National University , Busan, South Korea
                Author notes

                Edited by: Arjen van Ooyen, VU University Amsterdam, Netherlands

                Reviewed by: Noman Naseer, Air University, Pakistan; Tong Boon Tang, Universiti Teknologi Petronas, Malaysia

                *Correspondence: Myung-Yung Jeong myjeong@ 123456pusan.ac.kr
                Article
                10.3389/fninf.2018.00096
                6297380
                29456498
                489fffa7-7732-41ee-ba06-93c34d79eaad
                Copyright © 2018 Kamran, Naeem Mannan and Jeong.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 29 March 2018
                : 27 November 2018
                Page count
                Figures: 13, Tables: 0, Equations: 15, References: 47, Pages: 13, Words: 6711
                Categories
                Neuroscience
                Original Research

                Neurosciences
                functional near-infrared spectroscopy,initial dip,hemodynamic response,optimal cortical model,optical neuro-imaging

                Comments

                Comment on this article