9
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      International Journal of Nanomedicine (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the application of nanotechnology in diagnostics, therapeutics, and drug delivery systems throughout the biomedical field. Sign up for email alerts here.

      105,621 Monthly downloads/views I 7.033 Impact Factor I 10.9 CiteScore I 1.22 Source Normalized Impact per Paper (SNIP) I 1.032 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Microbubbles coupled to methotrexate-loaded liposomes for ultrasound-mediated delivery of methotrexate across the blood–brain barrier

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Methotrexate (MTX) is the single most effective agent for the treatment of primary central nervous system lymphoma. Currently, the delivery of MTX to the brain is achieved by high systemic doses, which cause severe long-term neurotoxicity, or intrathecal administration, which is highly invasive and may lead to infections or hemorrhagic complications. Acoustically active microbubbles have been developed as drug carriers for the noninvasive and brain-targeted delivery of therapeutics. However, their application is limited by their low drug-loading capacity. To overcome this limitation, we prepared microbubbles coupled to MTX-loaded liposomes using ZHIFUXIAN, a novel type of microbubbles with a superior safety profile and long circulation time. MTX-liposome-coupled microbubbles had a high drug-loading capacity of 8.91%±0.86%, and their size (2.64±0.93 μm in diameter) was suitable for intravenous injection. When used with ultrasound, they showed more potent in vitro cytotoxicity against Walker-256 cancer cells than MTX alone or MTX-loaded liposomes. When Sprague-Dawley rats were exposed to sonication, administration of these MTX-liposome-coupled microbubbles via the tail vein led to targeted disruption of the blood–brain barrier without noticeable tissue or capillary damage. High-performance liquid chromatography analysis of the brain MTX concentration showed that MTX delivery to the brain followed the order of MTX-liposome-coupled microbubbles + ultrasound (25.3±2.4 μg/g) > unmodified ZHIFUXIAN + MTX + ultrasound (18.6±2.2 μg/g) > MTX alone (6.97±0.75 μg/g) > MTX-liposome-coupled microbubbles (2.92±0.39 μg/g). Therefore, treatment with MTX-liposome-coupled microbubbles and ultrasound resulted in a significantly higher brain MTX concentration than all other treatments ( P<0.01). These results suggest that MTX-liposome-coupled microbubbles may hold great promise as new and effective therapies for primary central nervous system lymphoma and other central nervous system malignancies.

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Intranasal delivery of biologics to the central nervous system.

          Treatment of central nervous system (CNS) diseases is very difficult due to the blood-brain barrier's (BBB) ability to severely restrict entry of all but small, non-polar compounds. Intranasal administration is a non-invasive method of drug delivery which may bypass the BBB to allow therapeutic substances direct access to the CNS. Intranasal delivery of large molecular weight biologics such as proteins, gene vectors, and stem cells is a potentially useful strategy to treat a variety of diseases/disorders of the CNS including stroke, Parkinson's disease, multiple sclerosis, Alzheimer's disease, epilepsy, and psychiatric disorders. Here we give an overview of relevant nasal anatomy and physiology and discuss the pathways and mechanisms likely involved in drug transport from the nasal epithelium to the CNS. Finally we review both pre-clinical and clinical studies involving intranasal delivery of biologics to the CNS. Copyright © 2011 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            State-of-the-art materials for ultrasound-triggered drug delivery.

            Ultrasound is a unique and exciting theranostic modality that can be used to track drug carriers, trigger drug release and improve drug deposition with high spatial precision. In this review, we briefly describe the mechanisms of interaction between drug carriers and ultrasound waves, including cavitation, streaming and hyperthermia, and how those interactions can promote drug release and tissue uptake. We then discuss the rational design of some state-of-the-art materials for ultrasound-triggered drug delivery and review recent progress for each drug carrier, focusing on the delivery of chemotherapeutic agents such as doxorubicin. These materials include nanocarrier formulations, such as liposomes and micelles, designed specifically for ultrasound-triggered drug release, as well as microbubbles, microbubble-nanocarrier hybrids, microbubble-seeded hydrogels and phase-change agents. Copyright © 2014 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ultrasound-mediated blood-brain barrier disruption for targeted drug delivery in the central nervous system.

              The physiology of the vasculature in the central nervous system (CNS), which includes the blood-brain barrier (BBB) and other factors, complicates the delivery of most drugs to the brain. Different methods have been used to bypass the BBB, but they have limitations such as being invasive, non-targeted or requiring the formulation of new drugs. Focused ultrasound (FUS), when combined with circulating microbubbles, is a noninvasive method to locally and transiently disrupt the BBB at discrete targets. This review provides insight on the current status of this unique drug delivery technique, experience in preclinical models, and potential for clinical translation. If translated to humans, this method would offer a flexible means to target therapeutics to desired points or volumes in the brain, and enable the whole arsenal of drugs in the CNS that are currently prevented by the BBB. Copyright © 2014 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Int J Nanomedicine
                Int J Nanomedicine
                International Journal of Nanomedicine
                International Journal of Nanomedicine
                Dove Medical Press
                1176-9114
                1178-2013
                2014
                23 October 2014
                : 9
                : 4899-4909
                Affiliations
                [1 ]Department of Ultrasound, Xinqiao Hospital of the Third Military Medical University, Chongqing, People’s Republic of China
                [2 ]Department of Ultrasound, General Hospital of the Jinan Military Area, Jinan, People’s Republic of China
                Author notes
                Correspondence: Yunhua Gao, Department of Ultrasound, Xinqiao Hospital of the Third Military Medical University, Chongqing 400037, People’s Republic of China, Email gyh755631@ 123456163.com
                Weixiao Yang, Department of Ultrasound, Xinqiao Hospital of the Third Military Medical University, Chongqing 400037, People’s Republic of China, Email yangwx1973@ 123456163.com
                Article
                ijn-9-4899
                10.2147/IJN.S69845
                4211917
                48c84ffa-f88c-4281-90e7-213b1b6e8235
                © 2014 Wang et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Molecular medicine
                methotrexate,microbubbles,ultrasound,liposomes,blood–brain barrier
                Molecular medicine
                methotrexate, microbubbles, ultrasound, liposomes, blood–brain barrier

                Comments

                Comment on this article