33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Quantitative heterodonty in Crocodylia: assessing size and shape across modern and extinct taxa

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Heterodonty in Crocodylia and closely related taxa has not been defined quantitatively, as the teeth rarely have been measured. This has resulted in a range of qualitative descriptors, with little consensus on the condition of dental morphology in the clade. The purpose of this study is to present a method for the quantification of both size- and shape-heterodonty in members of Crocodylia. Data were collected from dry skeletal and fossil specimens of 34 crown crocodylians and one crocodyliform, resulting in 21 species total. Digital photographs were taken of each tooth and the skull, and the margins of both were converted into landmarks and semilandmarks. We expressed heterodonty through Foote’s morphological disparity, and a principal components analysis quantified shape variance. All specimens sampled were heterodont to varying degrees, with the majority of the shape variance represented by a ‘caniniform’ to ‘molariform’ transition. Heterodonty varied significantly between positions; size undulated whereas shape was significantly linear from mesial to distal. Size and shape appeared to be primarily decoupled. Skull shape correlated significantly with tooth shape. High size-heterodonty often correlated with relatively large caniniform teeth, reflecting a prioritization of securing prey. Large, highly molariform, distal teeth may be a consequence of high-frequency durophagy combined with prey size. The slender-snouted skull shape correlated with a caniniform arcade with low heterodonty. This was reminiscent of other underwater-feeding tetrapods, as they often focus on small prey that requires minimal processing. Several extinct taxa were very molariform, which was associated with low heterodonty. The terrestrial peirosaurid shared similarities with large modern crocodylian taxa, but may have processed prey differently. Disparity measures can be inflated or deflated if certain teeth are absent from the tooth row, and regression analysis may not best apply to strongly slender-snouted taxa. Nevertheless, when these methods are used in tandem they can give a complete picture of crocodylian heterodonty. Future researchers may apply our proposed method to most crocodylian specimens with an intact enough tooth row regardless of age, species, or rearing conditions, as this will add rigor to many life history studies of the clade.

          Related collections

          Most cited references160

          • Record: found
          • Abstract: found
          • Article: not found

          MorphoJ: an integrated software package for geometric morphometrics.

          Increasingly, data on shape are analysed in combination with molecular genetic or ecological information, so that tools for geometric morphometric analysis are required. Morphometric studies most often use the arrangements of morphological landmarks as the data source and extract shape information from them by Procrustes superimposition. The MorphoJ software combines this approach with a wide range of methods for shape analysis in different biological contexts. The program offers an integrated and user-friendly environment for standard multivariate analyses such as principal components, discriminant analysis and multivariate regression as well as specialized applications including phylogenetics, quantitative genetics and analyses of modularity in shape data. MorphoJ is written in Java and versions for the Windows, Macintosh and Unix/Linux platforms are freely available from http://www.flywings.org.uk/MorphoJ_page.htm. © 2010 Blackwell Publishing Ltd.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The pace of morphological change: historical transformation of skull shape in St Bernard dogs.

            Owing to the great morphological diversity of domestic dogs (Canis familiaris), the study of historical shape change in dog skulls provides an excellent opportunity for investigating the dynamics of morphological evolution. Breed standards make known which features were selected by breeders. Here we use the methods of geometric morphometrics to study change of skull shape in a series of purebred St Bernard dogs spanning nearly 120 years. A regression of shape on time was highly significant and revealed a consistent trend of shape change that corresponded to the features deemed desirable by the breed standard. Historical shape change in St Bernards involves a broadening of the skull and a tilting of the palate and upper jaw relative to the rest of the skull. This trend appears to be linear throughout the entire period and appears to be continuing. Allometry was ruled out as a contributing factor to this change because there was no consistent trend of historical change in skull size and because neither the patterns of static nor ontogenetic allometry corresponded to the historical shape change. The dramatic modification of the St Bernard skull demonstrates that selection can achieve sustained and substantial change and can completely overcome constraints such as allometry.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Differences between sliding semi-landmark methods in geometric morphometrics, with an application to human craniofacial and dental variation.

              Over the last decade, geometric morphometric methods have been applied increasingly to the study of human form. When too few landmarks are available, outlines can be digitized as series of discrete points. The individual points must be slid along a tangential direction so as to remove tangential variation, because contours should be homologous from subject to subject whereas their individual points need not. This variation can be removed by minimizing either bending energy (BE) or Procrustes distance (D) with respect to a mean reference form. Because these two criteria make different assumptions, it becomes necessary to study how these differences modify the results obtained. We performed bootstrapped-based Goodall's F-test, Foote's measurement, principal component (PC) and discriminant function analyses on human molars and craniometric data to compare the results obtained by the two criteria. Results show that: (1) F-scores and P-values were similar for both criteria; (2) results of Foote's measurement show that both criteria yield different estimates of within- and between-sample variation; (3) there is low correlation between the first PC axes obtained by D and BE; (4) the percentage of correct classification is similar for BE and D, but the ordination of groups along discriminant scores differs between them. The differences between criteria can alter the results when morphological variation in the sample is small, as in the analysis of modern human populations.
                Bookmark

                Author and article information

                Contributors
                Journal
                PeerJ
                PeerJ
                peerj
                peerj
                PeerJ
                PeerJ Inc. (San Diego, USA )
                2167-8359
                28 February 2019
                2019
                : 7
                : e6485
                Affiliations
                [1 ]Department of Natural Sciences, Daemen College , Amherst, NY, United States of America
                [2 ]Department of Earth and Planetary Sciences, University of Tennessee—Knoxville , Knoxville, TN, United States of America
                [3 ]Department of Physical Science, Physics and Pre-Engineering, Iowa Western Community College , Council Bluffs, IA, United States of America
                Article
                6485
                10.7717/peerj.6485
                6397764
                30842900
                48c86fdd-a1ee-43a2-bea7-207000b9fb98
                ©2019 D’Amore et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.

                History
                : 23 July 2018
                : 19 January 2019
                Funding
                Funded by: Daemen College
                Funded by: The University of Tennessee
                This work was supported by Daemen College. The University of Tennessee paid for the publication costs. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Ecology
                Paleontology
                Zoology

                caniniform,dentition,semilandmarks,diet,crown,geometric morphometrics,molariform,crocodyliformes

                Comments

                Comment on this article