67
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Construction of a high-density, high-resolution genetic map and its integration with BAC-based physical map in channel catfish

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Construction of genetic linkage map is essential for genetic and genomic studies. Recent advances in sequencing and genotyping technologies made it possible to generate high-density and high-resolution genetic linkage maps, especially for the organisms lacking extensive genomic resources. In the present work, we constructed a high-density and high-resolution genetic map for channel catfish with three large resource families genotyped using the catfish 250K single-nucleotide polymorphism (SNP) array. A total of 54,342 SNPs were placed on the linkage map, which to our knowledge had the highest marker density among aquaculture species. The estimated genetic size was 3,505.4 cM with a resolution of 0.22 cM for sex-averaged genetic map. The sex-specific linkage maps spanned a total of 4,495.1 cM in females and 2,593.7 cM in males, presenting a ratio of 1.7 : 1 between female and male in recombination fraction. After integration with the previously established physical map, over 87% of physical map contigs were anchored to the linkage groups that covered a physical length of 867 Mb, accounting for ∼90% of the catfish genome. The integrated map provides a valuable tool for validating and improving the catfish whole-genome assembly and facilitates fine-scale QTL mapping and positional cloning of genes responsible for economically important traits.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          The zebrafish reference genome sequence and its relationship to the human genome.

          Zebrafish have become a popular organism for the study of vertebrate gene function. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Meiotic recombination hot spots and cold spots.

            T Petes (2001)
            Meiotic recombination events are distributed unevenly throughout eukaryotic genomes. This inhomogeneity leads to distortions of genetic maps that can hinder the ability of geneticists to identify genes by map-based techniques. Various lines of evidence, particularly from studies of yeast, indicate that the distribution of recombination events might reflect, at least in part, global features of chromosome structure, such as the distribution of modified nucleosomes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A physical map of the human genome.

              The human genome is by far the largest genome to be sequenced, and its size and complexity present many challenges for sequence assembly. The International Human Genome Sequencing Consortium constructed a map of the whole genome to enable the selection of clones for sequencing and for the accurate assembly of the genome sequence. Here we report the construction of the whole-genome bacterial artificial chromosome (BAC) map and its integration with previous landmark maps and information from mapping efforts focused on specific chromosomal regions. We also describe the integration of sequence data with the map.
                Bookmark

                Author and article information

                Journal
                DNA Res
                DNA Res
                dnares
                dnares
                DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes
                Oxford University Press
                1340-2838
                1756-1663
                February 2015
                26 November 2014
                26 November 2014
                : 22
                : 1
                : 39-52
                Affiliations
                [1 ]The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University , Auburn, AL 36849, USA
                [2 ]USDA-ARS Warmwater Aquaculture Research Unit , Stoneville, MS 38776, USA
                [3 ]Department of Integrative Biology, University of Guelph , Guelph, Ontario N1G 2W1, Canada
                Author notes
                [* ]To whom correspondence should be addressed. Tel. +1 334-844-4054. Fax. +1 334-844-9208. E-mail: liuzhan@ 123456auburn.edu
                [†]

                These authors contributed equally to this work.

                Edited by Dr Toshihiko Shiroishi

                Article
                dsu038
                10.1093/dnares/dsu038
                4379976
                25428894
                48c98bfb-1c7c-4bd1-b3d4-ed2d06b9b383
                © The Author 2014. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 19 September 2014
                : 21 October 2014
                Categories
                Full Papers

                Genetics
                snp,catfish,linkage map,physical map,genome
                Genetics
                snp, catfish, linkage map, physical map, genome

                Comments

                Comment on this article