+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found

      Local Regulation of Adrenal Steroidogenesis: Subtle in vitro Effects of IL-1β on the Human Cell Line NCI-H295R Steroid Production along with Changes in MicroRNA Profile and Orphan Nuclear Receptors NR4As

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Introduction: IL-1β, a cytokine from the innate immune response, is well known for its proinflammatory effects and stimulating activity on the hypothalamus-pituitary-adrenal axis, leading to the pituitary synthesis of adrenocorticotropic hormone followed by cortisol (and dehydroepiandrosterone – DHEA) release by the adrenal gland. While IL-1β modulates the adrenal steroidogenesis at the central level, it is unclear whether it also exerts an effect on the adrenal gland. Method: We studied the effect of IL-1β on adrenal steroid production and steroidogenic enzyme RNA expression in the human cell line NCI-H295R. We also explored eventual changes in the microRNA (miRNA) profile from IL-1β-treated NCI-H295R cells. Results: Transcripts encoding IL-1β receptors 1 and 2 were noticeable in the cell line, with cortisol and DHEA production showing a subtle increase after cytokine treatment. Transcripts from key enzymes in the steroidogenic pathway were analyzed, with no noticeable changes on them. The miRNA profile was modified by IL-1β treatment to an extent which bears some relationship with the regulatory mechanisms underlying adrenal steroid production. Since orphan nuclear receptors NR4As have emerged as potential key factors for coordinating inflammatory and metabolic responses, cell expression studies were also carried out to show an NR4As transcript augmentation following IL-1β treatment. Discussion/Conclusions: The subtle increase in adrenal steroid production in response to IL-1β stimulation without any modification in the transcription of the steroidogenic enzymes analyzed suggests an additional inflammatory/anti-inflammatory loop, wherein NR4As receptors may participate. Besides its physiological role, this process might be implied in pathological states accompanied by an unbalanced immune-endocrine relationship.

          Related collections

          Most cited references 26

          • Record: found
          • Abstract: found
          • Article: not found

          qpcR: an R package for sigmoidal model selection in quantitative real-time polymerase chain reaction analysis.

          The qpcR library is an add-on to the free R statistical environment performing sigmoidal model selection in real-time quantitative polymerase chain reaction (PCR) data analysis. Additionally, the package implements the most commonly used algorithms for real-time PCR data analysis and is capable of extensive statistical comparison for the selection and evaluation of the different models based on several measures of goodness of fit. www.dr-spiess.de/qpcR.html. Statistical evaluations of the implemented methods can be found at www.dr-spiess.de under 'Supplemental Data'.
            • Record: found
            • Abstract: found
            • Article: not found

            Cytokines, prostaglandins and nitric oxide in the regulation of stress-response systems.

            Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis is accepted as one of the fundamental biological mechanisms that underlie major depression. This hyperactivity is caused by diminished feedback inhibition of glucocorticoid (GC)-induced reduction of HPA axis signaling and increased corticotrophin-releasing hormone (CRH) secretion from the hypothalamic paraventricular nucleus (PVN) and extra-hypothalamic neurons. During chronic stress-induced inhibition of systemic feedback, cytosolic glucocorticoid receptor (GR) levels were significantly changed in the prefrontal cortex (PFC) and hippocampus, both structures known to be deeply involved in the pathogenesis of depression. Cytokines secreted by both immune and non-immune cells can markedly affect neurotransmission within regulatory brain circuits related to the expression of emotions; cytokines may also induce hormonal changes similar to those observed following exposure to stress. Proinflammatory cytokines, including interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) are implicated in the etiologies of clinical depression and anxiety disorders. Prolonged stress responses and cytokines impair neuronal plasticity and stimulation of neurotransmission. Exposure to acute stress and IL-1β markedly increased IL-1β levels in the PFC, hippocampus and hypothalamus, as well as overall HPA axis activity. Repeated stress sensitized the HPA axis response to IL-1β. Inflammatory responses in the brain contribute to cellular damage associated with neuropsychiatric diseases related to stress. Physical, psychological or combined-stress conditions evoke a proinflammatory response in the brain and other systems, characterized by a complex release of several inflammatory mediators including cytokines, prostanoids, nitric oxide (NO) and transcription factors. Induced CRH release involves IL-1, IL-6 and TNF-α, for stimulation adrenocorticotropic hormone (ACTH) release from the anterior pituitary. NO also participates in signal transduction pathways that result in the release of corticosterone from the adrenal gland. NO participates in multiple interactions between neuroendocrine and neuroimmune systems in physiological and pathological processes. Neuronal NO synthase (nNOS) modulates learning and memory and is involved in development of neuropsychiatric diseases, including depression. Nitric oxide generated in response to stress exposure is associated with depression-like and anxiety-like behaviors. In the central nervous system (CNS), prostaglandins (PG) generated by the cyclooxygenase (COX) enzyme are involved in the regulation of HPA axis activity. Prior exposure to chronic stress alters constitutive (COX-1) and inducible (COX-2) cyclooxygenase responses to homotypic stress differently in the PFC, hippocampus and hypothalamus. Both PG and NO generated within the PVN participate in this modulation. Acute stress affects the functionality of COX/PG and NOS/NO systems in brain structures. The complex responses of central and peripheral pathways to acute and chronic stress involve cytokines, NO and PG systems that regulate and turn off responses that would be potentially harmful for cellular homeostasis and overall health.
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Molecular Interactions between NR4A Orphan Nuclear Receptors and NF-κB Are Required for Appropriate Inflammatory Responses and Immune Cell Homeostasis

              Appropriate innate and adaptive immune responses are essential for protection and resolution against chemical, physical or biological insults. Immune cell polarization is fundamental in orchestrating distinct phases of inflammation, specifically acute phase responses followed by resolution and tissue repair. Dysregulation of immune cell and inflammatory responses is a hallmark of multiple diseases encompassing atherosclerosis, rheumatoid arthritis, psoriasis and metabolic syndromes. A master transcriptional mediator of diverse inflammatory signaling and immune cell function is NF-κB, and altered control of this key regulator can lead to an effective switch from acute to chronic inflammatory responses. Members of the nuclear receptor (NR) superfamily of ligand-dependent transcription factors crosstalk with NF-κB to regulate immune cell function(s). Within the NR superfamily the NR4A1-3 orphan receptors have emerged as important regulators of immune cell polarization and NF-κB signaling. NR4A receptors modulate NF-κB activity in a dynamic fashion, either repressing or enhancing target gene expression leading to altered inflammatory outcome. Here we will discuss the pivotal role NR4A’s receptors play in orchestrating immune cell homeostasis through molecular crosstalk with NF-κB. Specifically, we will examine such NR4A/NF-κB interactions within the context of distinct cell phenotypes, including monocyte, macrophage, T cells, endothelial, and mesenchymal cells, which play a role in inflammation-associated disease. Finally, we review the therapeutic potential of altering NR4A/NF-κB interactions to limit hyper-inflammatory responses in vivo.

                Author and article information

                S. Karger AG
                February 2021
                28 January 2021
                : 27
                : 3
                : 131-141
                aInstituto de Inmunología Clínica y Experimental Rosario (IDICER-CONICET-UNR), Rosario, Argentina
                bFacultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
                cDepartamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
                dLaboratório de Pesquisas sobre o Timo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
                eLaboratório de Pesquisa Clínica em DST-AIDS, Instituto Nacional de Infectologia Evandro Chagas (FIOCRUZ), Rio de Janeiro, Brazil
                Author notes
                *Natalia Santucci, CONICET/Facultad de Ciencias Médicas Universidad Nacional de Rosario, IDICER-CONICET-UNR, Suipacha 590, Rosario Santa Fe 2000 (Argentina), santucci@idicer-conicet.gob.ar
                512325 Neuroimmunomodulation 2020;27:131–141
                © 2021 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 5, Tables: 1, Pages: 11
                Research Article


                Comment on this article