11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reconstructing genetic mating systems in the absence of parental information in colonially breeding waterbirds

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          DNA-based studies have demonstrated that avian genetic mating systems vary widely, with many species deviating from long-assumed monogamy by practicing extra-pair paternity and conspecific brood parasitism. Colonially breeding waterbirds provide interesting models in which to investigate this question because they show nesting habits proposed to promote alternative reproductive strategies. However, little is known about the genetic mating systems of this group of birds, mainly due to difficulties in obtaining genetic data from incubating adults at nests that are necessary for conducting conventional parentage studies. Here, we inferred kinship patterns among offspring in broods of three co-distributed waterbird species, Wood Stork ( Mycteria americana), Roseate Spoonbill ( Platalea ajaja) and Great Egret ( Ardea alba egretta), to investigate genetic mating system in the absence of parental data.

          Results

          Multi-step analyses combining estimates of relatedness coefficients, formulation of relationship-hypotheses, significance testing of alternative hypotheses, and maximum-likelihood sibship reconstruction techniques revealed evidence that alternative reproductive strategies may be present in natural populations of Wood Storks and Roseate Spoonbills, whereas relatedness of co-nestlings diagnosed in the Great Egrets did not deviate from a hypothesis of genetic monogamy. Specifically, under this analytical framework, inferred kinship relationships revealed that Great Egret nests contained full-sibling nestlings (100%), with the Roseate Spoonbill (RS) and Wood Stork (WS) exhibiting proportions of half-siblings (RS: 5%) and/or unrelated nestlings (RS: 24%; WS: 70%), patterns consistent with extra-pair paternity and conspecific brood parasitism, respectively.

          Conclusions

          We provide evidence that genetic monogamy occurs in Brazilian natural breeding colonies of the Great Egret, but is not the sole reproductive strategy employed by the Wood Stork and the Roseate Spoonbill. In fact, extra-pair paternity and conspecific brood parasitism were common in the latter two species, with a combined frequency of 7.5% and 11.3% in Roseate Spoonbill and Wood Stork, respectively. Although geographically co-distributed, differences among these species may be due to variation in their life histories. From a methodological standpoint, the approach implemented here, although not free from limitations, can have broad application for analyzing systems with limited genealogical information and/or in studying similarly challenging organisms in which obtaining genetic data on complete families is problematic.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: not found
          • Article: not found

          micro-checker: software for identifying and correcting genotyping errors in microsatellite data

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Estimating Relatedness Using Genetic Markers

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Estimating the probability of identity among genotypes in natural populations: cautions and guidelines.

              Individual identification using DNA fingerprinting methods is emerging as a critical tool in conservation genetics and molecular ecology. Statistical methods that estimate the probability of sampling identical genotypes using theoretical equations generally assume random associations between alleles within and among loci. These calculations are probably inaccurate for many animal and plant populations due to population substructure. We evaluated the accuracy of a probability of identity (P(ID)) estimation by comparing the observed and expected P(ID), using large nuclear DNA microsatellite data sets from three endangered species: the grey wolf (Canis lupus), the brown bear (Ursus arctos), and the Australian northern hairy-nosed wombat (Lasiorinyus krefftii). The theoretical estimates of P(ID) were consistently lower than the observed P(ID), and can differ by as much as three orders of magnitude. To help researchers and managers avoid potential problems associated with this bias, we introduce an equation for P(ID) between sibs. This equation provides an estimator that can be used as a conservative upper bound for the probability of observing identical multilocus genotypes between two individuals sampled from a population. We suggest computing the actual observed P(ID) when possible and give general guidelines for the number of codominant and dominant marker loci required to achieve a reasonably low P(ID) (e.g. 0.01-0.0001).
                Bookmark

                Author and article information

                Journal
                BMC Evol Biol
                BMC Evolutionary Biology
                BioMed Central
                1471-2148
                2011
                8 July 2011
                : 11
                : 196
                Affiliations
                [1 ]Laboratório de Genética de Aves, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, 13565-905, São Paulo, Brazil
                [2 ]Department of Biology, The University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna, V1V 1V7, British Columbia, Canada
                Article
                1471-2148-11-196
                10.1186/1471-2148-11-196
                3141440
                21740559
                48cd2b8c-e787-479d-8689-cd6fdca86384
                Copyright ©2011 Miño et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 18 February 2011
                : 8 July 2011
                Categories
                Research Article

                Evolutionary Biology
                Evolutionary Biology

                Comments

                Comment on this article