3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts

      , ,
      Nature Chemistry
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The periodic layers and ordered nanochannels of covalent organic frameworks (COFs) make these materials viable open catalytic nanoreactors, but their low stability has precluded their practical implementation. Here we report the synthesis of a crystalline porous COF that is stable against water, strong acids and strong bases, and we demonstrate its utility as a material platform for structural design and functional development. We endowed a crystalline and porous imine-based COF with stability by incorporating methoxy groups into its pore walls to reinforce interlayer interactions. We subsequently converted the resulting achiral material into two distinct chiral organocatalysts, with the high crystallinity and porosity retained, by appending chiral centres and catalytically active sites on its channel walls. The COFs thus prepared combine catalytic activity, enantioselectivity and recyclability, which are attractive in heterogeneous organocatalysis, and were shown to promote asymmetric C-C bond formation in water under ambient conditions.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found

          Dynamic imine chemistry.

          Formation of an imine--from an amine and an aldehyde--is a reversible reaction which operates under thermodynamic control such that the formation of kinetically competitive intermediates are, in the fullness of time, replaced by the thermodynamically most stable product(s). For this fundamental reason, the imine bond has emerged as an extraordinarily diverse and useful one in the hands of synthetic chemists. Imine bond formation is one of a handful of reactions which define a discipline known as dynamic covalent chemistry (DCC), which is now employed widely in the construction of exotic molecules and extended structures on account of the inherent 'proof-reading' and 'error-checking' associated with these reversible reactions. While both supramolecular chemistry and DCC operate under the regime of reversibility, DCC has the added advantage of constructing robust molecules on account of the formation of covalent bonds rather than fragile supermolecules resulting from noncovalent bonding interactions. On the other hand, these products tend to require more time to form--sometimes days or even months--but their formation can often be catalysed. In this manner, highly symmetrical molecules and extended structures can be prepared from relatively simple precursors. When DCC is utilised in conjunction with template-directed protocols--which rely on the use of noncovalent bonding interactions between molecular building blocks in order to preorganise them into certain relative geometries as a prelude to the formation of covalent bonds under equilibrium control--an additional level of control of structure and topology arises which offers a disarmingly simple way of constructing mechanically-interlocked molecules, such as rotaxanes, catenanes, Borromean rings, and Solomon knots. This tutorial review focuses on the use of dynamic imine bonds in the construction of compounds and products formed with and without the aid of additional templates. While synthesis under thermodynamic control is giving the field of chemical topology a new lease of life, it is also providing access to an endless array of new materials that are, in many circumstances, simply not accessible using more traditional synthetic methodologies where kinetic control rules the roost. One of the most endearing qualities of chemistry is its ability to reinvent itself in order to create its own object, as Berthelot first pointed out a century and a half ago.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Homochiral metal-organic frameworks for heterogeneous asymmetric catalysis.

            Homochiral crystallizations of two enantiomeric metal-organic frameworks (MOFs) Ce-MDIP1 and Ce-MDIP2 were achieved by using L- or D-BCIP as chiral inductions, respectively, where the chiralities were characterized by solid state CD spectra. Ce-MDIPs exhibit excellent catalytic activity and high enantioselectivity for the asymmetric cyanosilylation of aromatic aldehydes; the homochiral Cd-TBT MOF having L-PYI as a chiral adduct exhibits stereochemical catalysis toward the Aldol reactions.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Rapid Microwave Synthesis and Purification of Porous Covalent Organic Frameworks

                Bookmark

                Author and article information

                Journal
                Nature Chemistry
                Nature Chem
                Springer Science and Business Media LLC
                1755-4330
                1755-4349
                November 2015
                September 21 2015
                November 2015
                : 7
                : 11
                : 905-912
                Article
                10.1038/nchem.2352
                26492011
                48cec648-4b30-43f6-a4dd-e506efe3a8e7
                © 2015

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article