4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Land use intensification in a dry-hot valley reduced the constraints of water content on soil microbial diversity and multifunctionality but increased CO2 production

      , , , , , ,
      Science of The Total Environment
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d3863208e150">Conversion of abandoned land (mainly savanna) into cropland generally occurs in fragile ecosystems such as dry-hot valleys (DHVs) in southwest China, with the intent of increasing land productivity and conducting ecological restoration. However, the effects of conversion on soil microbial communities and carbon turnover of savanna ecosystems remain unclear, since savannas could be a vital but overlooked carbon sink. To illustrate the ecological consequences of land-use change (LUC) for savanna ecosystems, a 1-year field experiment was conducted in DHVs of southwest China. The soil properties, microbial respiration, and metagenomics from two different land-use types (grassland and mango plantation) were examined to reveal the effects of regional LUC on soil C turnover and microbial traits. Conversion from degraded grassland into cropland increased the contribution of soil microclimate to the microbial community composition, reduced the constraints of soil water content (SWC), and further decreased nutrient availability. LUC reshaped the composition and structure of soil bacterial communities. Specifically, soil dominant microbes that belonged to Actinobacteria and Proteobacteria were significantly enriched by conversion, while rare microbes that belonged to a wider range of phyla were generally depleted, leading to an overall decrease in community diversity. In addition, LUC-induced changes in soil characteristics and microbial communities further decreased soil multifunctionality as well as the carbon use efficiency of microbes. Intensified microbial respiration and a significant increase in the soil CO2 efflux were observed following LUC, which could drive changes in soil microbial community composition and functions (such as growth and regeneration). In summary, through simultaneously reducing constraints on SWC and decreasing nutrient availability, conversion from degraded grassland to cropland in a DHV decreased soil microbial diversity and multifunctionality, and increased microbial respiration and soil CO2 efflux. Our study provides new insights for understanding the role and mechanisms of LUC in soil carbon turnover in ecologically fragile areas such as DHVs. </p>

          Related collections

          Most cited references2

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2

          In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. We present DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression. The DESeq2 package is available at http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0550-8) contains supplementary material, which is available to authorized users.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fast gapped-read alignment with Bowtie 2.

            As the rate of sequencing increases, greater throughput is demanded from read aligners. The full-text minute index is often used to make alignment very fast and memory-efficient, but the approach is ill-suited to finding longer, gapped alignments. Bowtie 2 combines the strengths of the full-text minute index with the flexibility and speed of hardware-accelerated dynamic programming algorithms to achieve a combination of high speed, sensitivity and accuracy.
              Bookmark

              Author and article information

              Journal
              Science of The Total Environment
              Science of The Total Environment
              Elsevier BV
              00489697
              December 2022
              December 2022
              : 852
              : 158397
              Article
              10.1016/j.scitotenv.2022.158397
              36055510
              48d25f42-a561-4242-b910-8a7a10f95edc
              © 2022

              https://www.elsevier.com/tdm/userlicense/1.0/

              https://doi.org/10.15223/policy-017

              https://doi.org/10.15223/policy-037

              https://doi.org/10.15223/policy-012

              https://doi.org/10.15223/policy-029

              https://doi.org/10.15223/policy-004

              History

              Comments

              Comment on this article