36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Control of Mycoplasma hyopneumoniae infections in pigs

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mycoplasma hyopneumoniae, the primary pathogen of enzootic pneumonia, occurs worldwide and causes major economic losses to the pig industry. The organism adheres to and damages the ciliated epithelium of the respiratory tract. Affected pigs show chronic coughing, are more susceptible to other respiratory infections and have a reduced performance. Control of the disease can be accomplished in a number of ways. First, management practices and housing conditions in the herd should be optimized. These include all-in/all-out production, limiting factors that may destabilize herd immunity, maintaining optimal stocking densities, prevention of other respiratory diseases, and optimal housing and climatic conditions. Strategic medication with antimicrobials active against M. hyopneumoniae and, preferably, also against major secondary bacteria may be useful during periods when the pigs are at risk for respiratory disease. Finally, commercial bacterins are widely used to control M. hyopneumoniae infections. The main effects of vaccination include less clinical symptoms, lung lesions and medication use, and improved performance. However, bacterins provide only partial protection and do not prevent colonization of the organism. Different vaccination strategies (timing of vaccination, vaccination of sows, vaccination combined with antimicrobial medication) can be used, depending on the type of herd, the production system and management practices, the infection pattern and the preferences of the pig producer. Research on new vaccines is actively occurring, including aerosol and feed-based vaccines as well as subunit and DNA vaccines. Eradication of the infection at herd level based on age-segregation and medication is possible, but there is a permanent risk for re-infections.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular biology and pathogenicity of mycoplasmas.

          The recent sequencing of the entire genomes of Mycoplasma genitalium and M. pneumoniae has attracted considerable attention to the molecular biology of mycoplasmas, the smallest self-replicating organisms. It appears that we are now much closer to the goal of defining, in molecular terms, the entire machinery of a self-replicating cell. Comparative genomics based on comparison of the genomic makeup of mycoplasmal genomes with those of other bacteria, has opened new ways of looking at the evolutionary history of the mycoplasmas. There is now solid genetic support for the hypothesis that mycoplasmas have evolved as a branch of gram-positive bacteria by a process of reductive evolution. During this process, the mycoplasmas lost considerable portions of their ancestors' chromosomes but retained the genes essential for life. Thus, the mycoplasmal genomes carry a high percentage of conserved genes, greatly facilitating gene annotation. The significant genome compaction that occurred in mycoplasmas was made possible by adopting a parasitic mode of life. The supply of nutrients from their hosts apparently enabled mycoplasmas to lose, during evolution, the genes for many assimilative processes. During their evolution and adaptation to a parasitic mode of life, the mycoplasmas have developed various genetic systems providing a highly plastic set of variable surface proteins to evade the host immune system. The uniqueness of the mycoplasmal systems is manifested by the presence of highly mutable modules combined with an ability to expand the antigenic repertoire by generating structural alternatives, all compressed into limited genomic sequences. In the absence of a cell wall and a periplasmic space, the majority of surface variable antigens in mycoplasmas are lipoproteins. Apart from providing specific antimycoplasmal defense, the host immune system is also involved in the development of pathogenic lesions and exacerbation of mycoplasma induced diseases. Mycoplasmas are able to stimulate as well as suppress lymphocytes in a nonspecific, polyclonal manner, both in vitro and in vivo. As well as to affecting various subsets of lymphocytes, mycoplasmas and mycoplasma-derived cell components modulate the activities of monocytes/macrophages and NK cells and trigger the production of a wide variety of up-regulating and down-regulating cytokines and chemokines. Mycoplasma-mediated secretion of proinflammatory cytokines, such as tumor necrosis factor alpha, interleukin-1 (IL-1), and IL-6, by macrophages and of up-regulating cytokines by mitogenically stimulated lymphocytes plays a major role in mycoplasma-induced immune system modulation and inflammatory responses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Swine and poultry pathogens: the complete genome sequences of two strains of Mycoplasma hyopneumoniae and a strain of Mycoplasma synoviae.

            This work reports the results of analyses of three complete mycoplasma genomes, a pathogenic (7448) and a nonpathogenic (J) strain of the swine pathogen Mycoplasma hyopneumoniae and a strain of the avian pathogen Mycoplasma synoviae; the genome sizes of the three strains were 920,079 bp, 897,405 bp, and 799,476 bp, respectively. These genomes were compared with other sequenced mycoplasma genomes reported in the literature to examine several aspects of mycoplasma evolution. Strain-specific regions, including integrative and conjugal elements, and genome rearrangements and alterations in adhesin sequences were observed in the M. hyopneumoniae strains, and all of these were potentially related to pathogenicity. Genomic comparisons revealed that reduction in genome size implied loss of redundant metabolic pathways, with maintenance of alternative routes in different species. Horizontal gene transfer was consistently observed between M. synoviae and Mycoplasma gallisepticum. Our analyses indicated a likely transfer event of hemagglutinin-coding DNA sequences from M. gallisepticum to M. synoviae.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The genome sequence of Mycoplasma hyopneumoniae strain 232, the agent of swine mycoplasmosis.

              We present the complete genome sequence of Mycoplasma hyopneumoniae, an important member of the porcine respiratory disease complex. The genome is composed of 892,758 bp and has an average G+C content of 28.6 mol%. There are 692 predicted protein coding sequences, the average protein size is 388 amino acids, and the mean coding density is 91%. Functions have been assigned to 304 (44%) of the predicted protein coding sequences, while 261 (38%) of the proteins are conserved hypothetical proteins and 127 (18%) are unique hypothetical proteins. There is a single 16S-23S rRNA operon, and there are 30 tRNA coding sequences. The cilium adhesin gene has six paralogs in the genome, only one of which contains the cilium binding site. The companion gene, P102, also has six paralogs. Gene families constitute 26.3% of the total coding sequences, and the largest family is the 34-member ABC transporter family. Protein secretion occurs through a truncated pathway consisting of SecA, SecY, SecD, PrsA, DnaK, Tig, and LepA. Some highly conserved eubacterial proteins, such as GroEL and GroES, are notably absent. The DnaK-DnaJ-GrpR complex is intact, providing the only control over protein folding. There are several proteases that might serve as virulence factors, and there are 53 coding sequences with prokaryotic lipoprotein lipid attachment sites. Unlike other mycoplasmas, M. hyopneumoniae contains few genes with tandem repeat sequences that could be involved in phase switching or antigenic variation. Thus, it is not clear how M. hyopneumoniae evades the immune response and establishes a chronic infection.
                Bookmark

                Author and article information

                Contributors
                Journal
                Vet Microbiol
                Vet. Microbiol
                Veterinary Microbiology
                Elsevier B.V.
                0378-1135
                1873-2542
                22 September 2007
                25 January 2008
                22 September 2007
                : 126
                : 4
                : 297-309
                Affiliations
                [a ]Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
                [b ]Centre de Recerca en Sanitat Animal (CReSA), Departament de Sanitat i d’Anatomia Animals, Facultat de Veterinària, Universitat Auònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
                [c ]College of Veterinary Medicine, University of Minnesota, 1988 Fitch Avenue, St. Paul, MN 55108, USA
                Author notes
                [* ]Corresponding author. Tel.: +32 9 264 75 42; fax: +32 9 264 75 34. Dominiek.Maes@ 123456UGent.be
                Article
                S0378-1135(07)00450-6
                10.1016/j.vetmic.2007.09.008
                7130725
                17964089
                48dc1d14-497e-4326-8a31-d51c6518eaa4
                Copyright © 2007 Elsevier B.V. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 3 July 2007
                : 24 August 2007
                : 17 September 2007
                Categories
                Article

                Veterinary medicine
                mycoplasma hyopneumoniae,control,medication,vaccination,eradication
                Veterinary medicine
                mycoplasma hyopneumoniae, control, medication, vaccination, eradication

                Comments

                Comment on this article