21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lnc-SGK1 induced by Helicobacter pylori infection and highsalt diet promote Th2 and Th17 differentiation in human gastric cancer by SGK1/Jun B signaling

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Serum and glucocorticoid-inducible kinase (SGK) 1can be triggered in several malignancies. Most research on SGK1has focused on its role in cancer cells, and we sought to investigate its potential upstream non-coding RNA nominated as Lnc-SGK1, and their expression and diagnostic value in T cells in human gastric cancer (GC). Excessive expression of Lnc-SGK1 and SGK1 were observed in T cell either within the tumor or peripheral T cells, and furthermore associated with Helicobacter pylori infection and high-salt diet (HSD). Within T cells, Helicobacter pylori ( Hp) infection and high-salt dietcan up-regulated SGK1 expression and in turn enhance expression of Lnc-SGK1 through JunB activation. And expression of Lnc-SGK1 can further enhance transcription of SGK1 through cis regulatory mode. Lnc-SGK1 can induce Th2 and Th17 and reduce Th1 differentiation via SGK1/JunB signaling. Serum Lnc-SGK1 expression in combination with H. pylori infection and/or HSD in T cells was associated with poor prognosis of GC patients, and could be an ideal diagnostic index in human GC.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Ubiquitin ligase Nedd4L targets activated Smad2/3 to limit TGF-beta signaling.

          TGF-beta induces phosphorylation of the transcription factors Smad2 and Smad3 at the C terminus as well as at an interdomain linker region. TGF-beta-induced linker phosphorylation marks the activated Smad proteins for proteasome-mediated destruction. Here, we identify Nedd4L as the ubiquitin ligase responsible for this step. Through its WW domain, Nedd4L specifically recognizes a TGF-beta-induced phosphoThr-ProTyr motif in the linker region, resulting in Smad2/3 polyubiquitination and degradation. Nedd4L is not interchangeable with Smurf1, a ubiquitin ligase that targets BMP-activated, linker-phosphorylated Smad1. Nedd4L limits the half-life of TGF-beta-activated Smads and restricts the amplitude and duration of TGF-beta gene responses, and in mouse embryonic stem cells, it limits the induction of mesoendodermal fates by Smad2/3-activating factors. Hierarchical regulation is provided by SGK1, which phosphorylates Nedd4L to prevent binding of Smad2/3. Previously identified as a regulator of renal sodium channels, Nedd4L is shown here to play a broader role as a general modulator of Smad turnover during TGF-beta signal transduction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Posttranscriptional destabilization of the liver-specific long noncoding RNA HULC by the IGF2 mRNA-binding protein 1 (IGF2BP1).

            Selected long noncoding RNAs (lncRNAs) have been shown to play important roles in carcinogenesis. Although the cellular functions of these transcripts can be diverse, many lncRNAs regulate gene expression. In contrast, factors that control the expression of lncRNAs remain largely unknown. Here we investigated the impact of RNA binding proteins on the expression of the liver cancer-associated lncRNA HULC (highly up-regulated in liver cancer). First, we validated the strong up-regulation of HULC in human hepatocellular carcinoma. To elucidate posttranscriptional regulatory mechanisms governing HULC expression, we applied an RNA affinity purification approach to identify specific protein interaction partners and potential regulators. This method identified the family of IGF2BPs (IGF2 mRNA-binding proteins) as specific binding partners of HULC. Depletion of IGF2BP1, also known as IMP1, but not of IGF2BP2 or IGF2BP3, led to an increased HULC half-life and higher steady-state expression levels, indicating a posttranscriptional regulatory mechanism. Importantly, HULC represents the first IGF2BP substrate that is destabilized. To elucidate the mechanism by which IGF2BP1 destabilizes HULC, the CNOT1 protein was identified as a novel interaction partner of IGF2BP1. CNOT1 is the scaffold of the human CCR4-NOT deadenylase complex, a major component of the cytoplasmic RNA decay machinery. Indeed, depletion of CNOT1 increased HULC half-life and expression. Thus, IGF2BP1 acts as an adaptor protein that recruits the CCR4-NOT complex and thereby initiates the degradation of the lncRNA HULC. Our findings provide important insights into the regulation of lncRNA expression and identify a novel function for IGF2BP1 in RNA metabolism. © 2013 by the American Association for the Study of Liver Diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The AGC kinase serum- and glucocorticoid-regulated kinase 1 (SGK1) regulates TH1 and TH2 differentiation downstream of mTORC2

              Serum- and glucocorticoid-regulated kinase 1 (SGK1) is an AGC kinase that regulates membrane sodium channel expression in renal tubular cells in an mTORC2-dependent manner. We hypothesized that SGK1 might represent a novel mTORC2-dependent regulator of T cell differentiation and function. Here we demonstrate that upon activation by mTORC2, SGK1 promoted TH2 differentiation by negatively regulating the NEDD4-2 E3 ligase-mediated destruction of transcription factor JunB. Simultaneously, SGK1 repressed the production of interferon-γ (IFN-γ) by controlling the expression of the long isoform of transcription factor TCF-1. Consistent with these findings, mice with a selective deletion of SGK1 in T cells were resistant to experimentally induced asthma, generated robust amounts of IFN-γ in response to viral infections and more readily rejected tumors.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                12 April 2016
                1 March 2016
                : 7
                : 15
                : 20549-20560
                Affiliations
                1 Department of Clinical Laboratory, The First People's Hospital of Kunshan, Affiliated to Jiangsu University, Kunshan, Jiangsu, China
                2 Department of Clinical Laboratory, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
                3 Department of Clinical Laboratory, Wujin Hospital Affiliated to Jiangsu University, Changzhou, Jiangsu, China
                Author notes
                Correspondence to: Yongliang Yao, Yaoyl313@ 123456163.com
                Article
                7823
                10.18632/oncotarget.7823
                4991474
                26942879
                48ddd25e-0501-4dee-99b3-53c2fb4c36ea
                Copyright: © 2016 Yao et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 7 December 2015
                : 14 February 2016
                Categories
                Research Paper

                Oncology & Radiotherapy
                gastric cancer,high-salt diet,helicobacter pylori infection,serum and glucocorticoid-inducible kinase,lncrna

                Comments

                Comment on this article