16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Correlation between Clinicopathology and Expression of Heat Shock Protein 72 and Glycoprotein 96 in Human Esophageal Squamous Cell Carcinoma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Heat shock protein 72 (HSP72) and glycoprotein 96 (gp96) are highly expressed in cancer tissues. Recent studies indicate the possible roles of HSP72 and gp96 in the development and progression of gastrointestinal carcinomas but detailed information is still ambiguous. We investigated the correlation between clinicopathology and expression of HSP72 and gp96 in human esophageal squamous cell carcinoma. The expression of HSP72 and gp96 was studied in 120 human esophageal squamous cell carcinomas with or without metastasis as well as in mucous membrane adjacent to cancers by way of immunohistochemistry. HSP72 immunoreactivities were detected in 112 of 120 primary tumors (93.3%) and in 30 of 120 mucous membranes adjacent to cancers (25.0%). Gp96 detected in esophageal squamous cell carcinoma and inmucous membrane adjacent to cancer was 85.0% and 20.0%, respectively. Both HSP72 and gp96 stained in cytoplasm. HSP72 and gp96 expression in esophageal squamous cell carcinomas withmetastasis was significantly higher than those with nonmetastasis ( P < .05). The results indicate that there exists a significant correlation between the expression of HSP72 and gp96 and the progression of esophageal squamous cell carcinomas. HSP72 and gp96 expression were significantly associated with the presence of tumor infiltration, lymph node, and remote metastasis.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications.

          Heat shock proteins (Hsps) are overexpressed in a wide range of human cancers and are implicated in tumor cell proliferation, differentiation, invasion, metastasis, death, and recognition by the immune system. We review the current status of the role of Hsp expression in cancer with special emphasis on the clinical setting. Although Hsp levels are not informative at the diagnostic level, they are useful biomarkers for carcinogenesis in some tissues and signal the degree of differentiation and the aggressiveness of some cancers. In addition, the circulating levels of Hsp and anti-Hsp antibodies in cancer patients may be useful in tumor diagnosis. Furthermore, several Hsp are implicated with the prognosis of specific cancers, most notably Hsp27, whose expression is associated with poor prognosis in gastric, liver, and prostate carcinoma, and osteosarcomas, and Hsp70, which is correlated with poor prognosis in breast, endometrial, uterine cervical, and bladder carcinomas. Increased Hsp expression may also predict the response to some anticancer treatments. For example, Hsp27 and Hsp70 are implicated in resistance to chemotherapy in breast cancer, Hsp27 predicts a poor response to chemotherapy in leukemia patients, whereas Hsp70 expression predicts a better response to chemotherapy in osteosarcomas. Implication of Hsp in tumor progression and response to therapy has led to its successful targeting in therapy by 2 main strategies, including: (1) pharmacological modification of Hsp expression or molecular chaperone activity and (2) use of Hsps in anticancer vaccines, exploiting their ability to act as immunological adjuvants. In conclusion, the present times are of importance for the field of Hsps in cancer, with great contributions to both basic and clinical cancer research.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The glucose-regulated proteins: stress induction and clinical applications.

            Amy S. Lee (2001)
            A protective mechanism used by cells to adapt to stress of the endoplasmic reticulum (ER) is the induction of members of the glucose-regulated protein (Grp) family. The induction of mammalian Grp proteins in response to ER stress involves a complex network of regulators and novel mechanisms. The elucidation of Grp function and regulation opens up new therapeutic approaches to diseases associated with ER stress and cancer.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Cells in stress: transcriptional activation of heat shock genes.

              R Morimoto (1993)
                Bookmark

                Author and article information

                Journal
                Clin Dev Immunol
                CDI
                Clinical and Developmental Immunology
                Hindawi Publishing Corporation
                1740-2522
                1740-2530
                2010
                10 March 2010
                : 2010
                : 212537
                Affiliations
                1Department of Pathology, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
                2Department of Infectious Disease, Xi'an Central Hospital, Xi'an, Shaanxi 710000, China
                Author notes

                Academic Editor: Mario Clerici

                Article
                10.1155/2010/212537
                2836527
                20300187
                48e842ec-13de-4ce9-ad43-a7821a70efad
                Copyright © 2010 Xiaoping Wang et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 9 July 2009
                : 30 November 2009
                : 21 January 2010
                Categories
                Research Article

                Immunology
                Immunology

                Comments

                Comment on this article