8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Method for Predicting Hemolytic Potency of Chemically Modified Peptides From Its Structure

      methods-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the present study, a systematic effort has been made to predict the hemolytic potency of chemically modified peptides. All models have been trained, tested, and evaluated on a dataset that contains 583 modified hemolytic peptides and a balanced number of non-hemolytic peptides. Machine learning techniques have been used to build the classification models using an immense range of peptide features that include 2D, 3D descriptors, fingerprints, atom, and diatom compositions. Random Forest based model developed using fingerprints as an input feature achieved maximum accuracy of 78.33% with AUC of 0.86 on the main dataset and accuracy of 78.29% with AUC of 0.85 on the validation dataset. Models developed in this study have been incorporated in a web server “HemoPImod” to facilitate the scientific community ( http://webs.iiitd.edu.in/raghava/hemopimod/).

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          pROC: an open-source package for R and S+ to analyze and compare ROC curves

          Background Receiver operating characteristic (ROC) curves are useful tools to evaluate classifiers in biomedical and bioinformatics applications. However, conclusions are often reached through inconsistent use or insufficient statistical analysis. To support researchers in their ROC curves analysis we developed pROC, a package for R and S+ that contains a set of tools displaying, analyzing, smoothing and comparing ROC curves in a user-friendly, object-oriented and flexible interface. Results With data previously imported into the R or S+ environment, the pROC package builds ROC curves and includes functions for computing confidence intervals, statistical tests for comparing total or partial area under the curve or the operating points of different classifiers, and methods for smoothing ROC curves. Intermediary and final results are visualised in user-friendly interfaces. A case study based on published clinical and biomarker data shows how to perform a typical ROC analysis with pROC. Conclusions pROC is a package for R and S+ specifically dedicated to ROC analysis. It proposes multiple statistical tests to compare ROC curves, and in particular partial areas under the curve, allowing proper ROC interpretation. pROC is available in two versions: in the R programming language or with a graphical user interface in the S+ statistical software. It is accessible at http://expasy.org/tools/pROC/ under the GNU General Public License. It is also distributed through the CRAN and CSAN public repositories, facilitating its installation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Open Babel: An open chemical toolbox

            Background A frequent problem in computational modeling is the interconversion of chemical structures between different formats. While standard interchange formats exist (for example, Chemical Markup Language) and de facto standards have arisen (for example, SMILES format), the need to interconvert formats is a continuing problem due to the multitude of different application areas for chemistry data, differences in the data stored by different formats (0D versus 3D, for example), and competition between software along with a lack of vendor-neutral formats. Results We discuss, for the first time, Open Babel, an open-source chemical toolbox that speaks the many languages of chemical data. Open Babel version 2.3 interconverts over 110 formats. The need to represent such a wide variety of chemical and molecular data requires a library that implements a wide range of cheminformatics algorithms, from partial charge assignment and aromaticity detection, to bond order perception and canonicalization. We detail the implementation of Open Babel, describe key advances in the 2.3 release, and outline a variety of uses both in terms of software products and scientific research, including applications far beyond simple format interconversion. Conclusions Open Babel presents a solution to the proliferation of multiple chemical file formats. In addition, it provides a variety of useful utilities from conformer searching and 2D depiction, to filtering, batch conversion, and substructure and similarity searching. For developers, it can be used as a programming library to handle chemical data in areas such as organic chemistry, drug design, materials science, and computational chemistry. It is freely available under an open-source license from http://openbabel.org.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Therapeutic peptides: Historical perspectives, current development trends, and future directions

              Peptide therapeutics have played a notable role in medical practice since the advent of insulin therapy in the 1920s. Over 60 peptide drugs are approved in the United States and other major markets, and peptides continue to enter clinical development at a steady pace. Peptide drug discovery has diversified beyond its traditional focus on endogenous human peptides to include a broader range of structures identified from other natural sources or through medicinal chemistry efforts. We maintain a comprehensive dataset on peptides that have entered human clinical studies that includes over 150 peptides in active development today. Here we provide an overview of the peptide therapeutic landscape, including historical perspectives, molecular characteristics, regulatory benchmarks, and a therapeutic area breakdown.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                20 February 2020
                2020
                : 11
                : 54
                Affiliations
                [1] 1Department of Computational Biology, Indraprastha Institute of Information Technology , Okhla, India
                [2] 2Bioinformatics Centre, CSIR-Institute of Microbial Technology , Chandigarh, India
                Author notes

                Edited by: Yurong Lai, Gilead, United States

                Reviewed by: Mamoon Rashid, King Abdullah International Medical Research Center, Saudi Arabia; Lei Wang, Queen's University Belfast, United Kingdom

                *Correspondence: Gajendra P.S. Raghava, raghava@ 123456iiitd.ac.in

                This article was submitted to Drug Metabolism and Transport, a section of the journal Frontiers in Pharmacology

                Article
                10.3389/fphar.2020.00054
                7045810
                32153395
                48e8deb1-d83b-4cc7-89c9-bc29a9c679b2
                Copyright © 2020 Kumar, Kumar, Agrawal, Patiyal and Raghava

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 24 September 2019
                : 20 January 2020
                Page count
                Figures: 2, Tables: 6, Equations: 6, References: 42, Pages: 13, Words: 4399
                Funding
                Funded by: Science and Engineering Research Board 10.13039/501100001843
                Categories
                Pharmacology
                Methods

                Pharmacology & Pharmaceutical medicine
                modified hemolytic peptides,machine learning,chemical descriptors,fingerprints,random forest,hemopimod

                Comments

                Comment on this article