38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Aldo-keto reductase (AKR) superfamily: Genomics and annotation

      research-article
      1 , 1 ,
      Human Genomics
      BioMed Central
      carbonyl reduction, nomenclature, pseudogene, SNP, splice variant

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aldo-keto reductases ( AKRs) are phase I metabolising enzymes that catalyse the reduced nicotinamide adenine dinucleotide (phosphate) (NAD(P)H)-dependent reduction of carbonyl groups to yield primary and secondary alcohols on a wide range of substrates, including aliphatic and aromatic aldehydes and ketones, ketoprostaglan-dins, ketosteroids and xenobiotics. In so doing they functionalise the carbonyl group for conjugation (phase II enzyme reactions). Although functionally diverse, AKRs form a protein superfamily based on their high sequence identity and common protein fold, the (α/(β) 8-barrel structure. Well over 150 AKR enzymes, from diverse organisms, have been annotated so far and given systematic names according to a nomenclature that is based on multiple protein sequence alignment and degree of identity. Annotation of non-vertebrate AKRs at the National Center for Biotechnology Information or Vertebrate Genome Annotation (vega) database does not often include the systematic nomenclature name, so the most comprehensive overview of all annotated AKRs is found on the AKR website ( http://www.med.upenn.edu/akr/). This site also hosts links to more detailed and specialised information (eg on crystal structures, gene expression and single nucleotide polymorphisms [SNPs]). The protein-based AKR nomenclature allows unambiguous identification of a given enzyme but does not reflect the wealth of genomic and transcriptomic variation that exists in the various databases. In this context, identification of putative new AKRs and their distinction from pseudogenes are challenging. This review provides a short summary of the characteristic features of AKR biochemistry and structure that have been reviewed in great detail elsewhere, and focuses mainly on nomenclature and database entries of human AKRs that so far have not been subject to systematic annotation. Recent developments in the annotation of SNP and transcript variance in AKRs are also summarised.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          The aldo-keto reductase superfamily and its role in drug metabolism and detoxification.

          The aldo-keto reductase (AKR) superfamily comprises enzymes that catalyze redox transformations involved in biosynthesis, intermediary metabolism, and detoxification. Substrates of AKRs include glucose, steroids, glycosylation end-products, lipid peroxidation products, and environmental pollutants. These proteins adopt a (beta/alpha)(8) barrel structural motif interrupted by a number of extraneous loops and helixes that vary between proteins and bring structural identity to individual families. The human AKR family differs from the rodent families. Due to their broad substrate specificity, AKRs play an important role in the phase II detoxification of a large number of pharmaceuticals, drugs, and xenobiotics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Aldo-keto reductases and bioactivation/detoxication.

            Aldo-keto reductases (AKRs) are soluble NAD(P)(H) oxidoreductases that primarily reduce aldehydes and ketones to primary and secondary alcohols, respectively. The ten known human AKR enzymes can turnover a vast range of substrates, including drugs, carcinogens, and reactive aldehydes. They play central roles in the metabolism of these agents, and this can lead to either their bioactivation or detoxication. AKRs are Phase I drug metabolizing enzymes for a variety of carbonyl-containing drugs and are implicated in cancer chemotherapeutic drug resistance. They are involved in tobacco-carcinogenesis because they activate polycyclic aromatic trans-dihydrodiols to yield reactive and redox active o-quinones, but they also catalyze the detoxication of nicotine derived nitrosamino ketones. They also detoxify reactive aldehydes formed from exogenous toxicants, e.g., aflatoxin, endogenous toxicants, and those formed from the breakdown of lipid peroxides. AKRs are stress-regulated genes and play a central role in the cellular response to osmotic, electrophilic, and oxidative stress.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Comparative anatomy of the aldo-keto reductase superfamily.

              The aldo-keto reductases metabolize a wide range of substrates and are potential drug targets. This protein superfamily includes aldose reductases, aldehyde reductases, hydroxysteroid dehydrogenases and dihydrodiol dehydrogenases. By combining multiple sequence alignments with known three-dimensional structures and the results of site-directed mutagenesis studies, we have developed a structure/function analysis of this superfamily. Our studies suggest that the (alpha/beta)8-barrel fold provides a common scaffold for an NAD(P)(H)-dependent catalytic activity, with substrate specificity determined by variation of loops on the C-terminal side of the barrel. All the aldo-keto reductases are dependent on nicotinamide cofactors for catalysis and retain a similar cofactor binding site, even among proteins with less than 30% amino acid sequence identity. Likewise, the aldo-keto reductase active site is highly conserved. However, our alignments indicate that variation ofa single residue in the active site may alter the reaction mechanism from carbonyl oxidoreduction to carbon-carbon double-bond reduction, as in the 3-oxo-5beta-steroid 4-dehydrogenases (Delta4-3-ketosteroid 5beta-reductases) of the superfamily. Comparison of the proposed substrate binding pocket suggests residues 54 and 118, near the active site, as possible discriminators between sugar and steroid substrates. In addition, sequence alignment and subsequent homology modelling of mouse liver 17beta-hydroxysteroid dehydrogenase and rat ovary 20alpha-hydroxysteroid dehydrogenase indicate that three loops on the C-terminal side of the barrel play potential roles in determining the positional and stereo-specificity of the hydroxysteroid dehydrogenases. Finally, we propose that the aldo-keto reductase superfamily may represent an example of divergent evolution from an ancestral multifunctional oxidoreductase and an example of convergent evolution to the same active-site constellation as the short-chain dehydrogenase/reductase superfamily.
                Bookmark

                Author and article information

                Journal
                Hum Genomics
                Hum. Genomics
                Human Genomics
                BioMed Central
                1473-9542
                1479-7364
                2009
                1 July 2009
                : 3
                : 4
                : 362-370
                Affiliations
                [1 ]Center for Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104-6084, USA
                Article
                1479-7364-3-4-362
                10.1186/1479-7364-3-4-362
                3206293
                19706366
                48ecde98-e71e-45a1-8887-dc80480f117c
                Copyright ©2009 Henry Stewart Publications
                History
                : 22 May 2009
                : 22 May 2009
                Categories
                Genome Review

                Genetics
                snp,pseudogene,carbonyl reduction,splice variant,nomenclature
                Genetics
                snp, pseudogene, carbonyl reduction, splice variant, nomenclature

                Comments

                Comment on this article