Blog
About

50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of regulatory RNAs in Bacillus subtilis

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Post-transcriptional regulatory mechanisms are widespread in bacteria. Interestingly, current published data hint that some of these mechanisms may be non-random with respect to their phylogenetic distribution. Although small, trans-acting regulatory RNAs commonly occur in bacterial genomes, they have been better characterized in Gram-negative bacteria, leaving the impression that they may be less important for Firmicutes. It has been presumed that Gram-positive bacteria, in particular the Firmicutes, are likely to utilize cis-acting regulatory RNAs located within the 5′ mRNA leader region more often than trans-acting regulatory RNAs. In this analysis we catalog, by a deep sequencing-based approach, both classes of regulatory RNA candidates for Bacillus subtilis, the model microorganism for Firmicutes. We successfully recover most of the known small RNA regulators while also identifying a greater number of new candidate RNAs. We anticipate these data to be a broadly useful resource for analysis of post-transcriptional regulatory strategies in B. subtilis and other Firmicutes.

          Related collections

          Most cited references 79

          • Record: found
          • Abstract: found
          • Article: not found

          Regulatory RNAs in bacteria.

          Bacteria possess numerous and diverse means of gene regulation using RNA molecules, including mRNA leaders that affect expression in cis, small RNAs that bind to proteins or base pair with target RNAs, and CRISPR RNAs that inhibit the uptake of foreign DNA. Although examples of RNA regulators have been known for decades in bacteria, we are only now coming to a full appreciation of their importance and prevalence. Here, we review the known mechanisms and roles of regulatory RNAs, highlight emerging themes, and discuss remaining questions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The primary transcriptome of the major human pathogen Helicobacter pylori.

            Genome sequencing of Helicobacter pylori has revealed the potential proteins and genetic diversity of this prevalent human pathogen, yet little is known about its transcriptional organization and noncoding RNA output. Massively parallel cDNA sequencing (RNA-seq) has been revolutionizing global transcriptomic analysis. Here, using a novel differential approach (dRNA-seq) selective for the 5' end of primary transcripts, we present a genome-wide map of H. pylori transcriptional start sites and operons. We discovered hundreds of transcriptional start sites within operons, and opposite to annotated genes, indicating that complexity of gene expression from the small H. pylori genome is increased by uncoupling of polycistrons and by genome-wide antisense transcription. We also discovered an unexpected number of approximately 60 small RNAs including the epsilon-subdivision counterpart of the regulatory 6S RNA and associated RNA products, and potential regulators of cis- and trans-encoded target messenger RNAs. Our approach establishes a paradigm for mapping and annotating the primary transcriptomes of many living species.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of virus-encoded microRNAs.

              RNA silencing processes are guided by small RNAs that are derived from double-stranded RNA. To probe for function of RNA silencing during infection of human cells by a DNA virus, we recorded the small RNA profile of cells infected by Epstein-Barr virus (EBV). We show that EBV expresses several microRNA (miRNA) genes. Given that miRNAs function in RNA silencing pathways either by targeting messenger RNAs for degradation or by repressing translation, we identified viral regulators of host and/or viral gene expression.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                October 2010
                October 2010
                4 June 2010
                4 June 2010
                : 38
                : 19
                : 6637-6651
                Affiliations
                1Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390-9038, USA and 2Max Planck Institute for Infection Biology, RNA Biology, Charitéplatz 1, D-10117 Berlin, Germany
                Author notes
                *To whom correspondence should be addressed. Tel: +1 214 648 9114; Fax: +1 214 648 8856; Email: wade.winkler@ 123456utsouthwestern.edu
                Article
                gkq454
                10.1093/nar/gkq454
                2965217
                20525796
                © The Author(s) 2010. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Categories
                RNA

                Genetics

                Comments

                Comment on this article