44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ghrelin Indirectly Activates Hypophysiotropic CRF Neurons in Rodents

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ghrelin is a stomach-derived hormone that regulates food intake and neuroendocrine function by acting on its receptor, GHSR ( Growth Hormone Secretagogue Receptor ). Recent evidence indicates that a key function of ghrelin is to signal stress to the brain. It has been suggested that one of the potential stress-related ghrelin targets is the CRF ( Corticotropin-Releasing Factor)-producing neurons of the hypothalamic paraventricular nucleus, which secrete the CRF neuropeptide into the median eminence and activate the hypothalamic-pituitary-adrenal axis. However, the neural circuits that mediate the ghrelin-induced activation of this neuroendocrine axis are mostly uncharacterized. In the current study, we characterized in vivo the mechanism by which ghrelin activates the hypophysiotropic CRF neurons in mice. We found that peripheral or intra-cerebro-ventricular administration of ghrelin strongly activates c-fos – a marker of cellular activation – in CRF-producing neurons. Also, ghrelin activates CRF gene expression in the paraventricular nucleus of the hypothalamus and the hypothalamic-pituitary-adrenal axis at peripheral level. Ghrelin administration directly into the paraventricular nucleus of the hypothalamus also induces c-fos within the CRF-producing neurons and the hypothalamic-pituitary-adrenal axis, without any significant effect on the food intake. Interestingly, dual-label immunohistochemical analysis and ghrelin binding studies failed to show GHSR expression in CRF neurons. Thus, we conclude that ghrelin activates hypophysiotropic CRF neurons, albeit indirectly.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Stomach is a major source of circulating ghrelin, and feeding state determines plasma ghrelin-like immunoreactivity levels in humans.

          Ghrelin, an endogenous ligand for the GH secretagogue receptor, was isolated from rat stomach and is involved in a novel system for regulating GH release. Although previous studies in rodents suggest that ghrelin is also involved in energy homeostasis and that ghrelin secretion is influenced by feeding, little is known about plasma ghrelin in humans. To address this issue, we studied plasma ghrelin-like immunoreactivity levels and elucidated the source of circulating ghrelin and the effects of feeding state on plasma ghrelin-like immunoreactivity levels in humans. The plasma ghrelin-like immunoreactivity concentration in normal humans measured by a specific RIA was 166.0 +/- 10.1 fmol/ml. Northern blot analysis of various human tissues identified ghrelin mRNA found most abundantly in the stomach and plasma ghrelin-like immunoreactivity levels in totally gastrectomized patients were reduced to 35% of those in normal controls. Plasma ghrelin-like immunoreactivity levels were increased by 31% after 12-h fasting and reduced by 22% immediately after habitual feeding. In patients with anorexia nervosa, plasma ghrelin-like immunoreactivity levels were markedly elevated compared with those in normal controls (401.2 +/- 58.4 vs. 192.8 +/- 19.4 fmol/ml) and were negatively correlated with body mass indexes. We conclude that the stomach is a major source of circulating ghrelin and that plasma ghrelin-like immunoreactivity levels reflect acute and chronic feeding states in humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mice lacking ghrelin receptors resist the development of diet-induced obesity.

            Ghrelin is the endogenous ligand for the growth hormone secretagogue receptor (GHSR; ghrelin receptor). Since its discovery, accumulating evidence has suggested that ghrelin may play a role in signaling and reversing states of energy insufficiency. For example, ghrelin levels rise following food deprivation, and ghrelin administration stimulates feeding and increases body weight and adiposity. However, recent loss-of-function studies have raised questions regarding the physiological significance of ghrelin in regulating these processes. Here, we present results of a study using a novel GHSR-null mouse model, in which ghrelin administration fails to acutely stimulate food intake or activate arcuate nucleus neurons. We show that when fed a high-fat diet, both female and male GHSR-null mice eat less food, store less of their consumed calories, preferentially utilize fat as an energy substrate, and accumulate less body weight and adiposity than control mice. Similar effects on body weight and adiposity were also observed in female, but not male, GHSR-null mice fed standard chow. GHSR deletion also affected locomotor activity and levels of glycemia. These findings support the hypothesis that ghrelin-responsive pathways are an important component of coordinated body weight control. Moreover, our data suggest that ghrelin signaling is required for development of the full phenotype of diet-induced obesity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ghrelin, a natural GH secretagogue produced by the stomach, induces hyperglycemia and reduces insulin secretion in humans.

              Ghrelin, a 28 amino acid gastric hormone is a natural ligand of the GH Secretagogue (GHS) receptor (GHS-R) and strongly stimulates GH secretion though, like synthetic GHS, it shows other endocrine and non-endocrine activities. Aim of the present study was to clarify whether ghrelin administration influences insulin and glucose levels in humans. To this goal, we compared the effects of ghrelin, hexarelin, a synthetic GHS, or placebo on insulin and glucose as well as on GH levels in 11 normal young volunteers (age [mean +/- SEM]: 28.5 +/- 3.1 yr; BMI: 22.2 +/- 0.9 Kg/m(2)). Ghrelin induced very marked increase in GH secretion (DeltaAUC(0-180): 5777.1 +/- 812.6 microg/l/h; p < 0.01) which was not modified by placebo. Placebo administration did not modify insulin and glucose levels. On the other hand, ghrelin administration induced a prompt increase in glucose levels (DeltaAUC(0-180): 1343.1 +/- 443.5 mg/dl/h; p < 0.01 vs. saline). Absolute glucose levels at +15' were already higher than those at baseline (93.9 +/- 7.1 mg/dl; p < 0.01) and persisted elevated up to 165' (90.3 +/- 5.8 mg/dl; p < 0.01 vs. 0'). Ghrelin administration was also followed by a decrease in serum insulin levels (DeltaAUC(0-180): -207.1 +/- 70.5 mU/l/h; p < 0.05 vs. saline). Absolute insulin levels were significantly reduced from 30' (11.4 +/- 0.9 mU/l, p < 0.1 vs. 0'), showed the nadir at +45' (10.0 +/- 0.6 mU/l, p < 0.01 vs. 0') and then persisted lower (p < 0.01) than baseline up to +105'. Hexarelin administration did not modify glucose and insulin levels despite its marked GH-releasing effect (DeltaAUC(0-180): 4156.8 +/- 1180.3 microg/l/h; p < 0.01 vs. saline) that was slightly lower (p < 0.05) than that of ghrelin. In conclusion, these findings show that, besides stimulating GH secretion, ghrelin is a gastric hormone possessing metabolic actions such as hyperglycemic effect and lowering effect on insulin secretion in humans, at least after acute administration.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                20 February 2012
                : 7
                : 2
                : e31462
                Affiliations
                [1 ]Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), La Plata, Buenos Aires, Argentina
                [2 ]Laboratory of Reproductive Endocrinology, Multidisciplinary Institute of Cell Biology, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), La Plata, Buenos Aires, Argentina
                [3 ]Divisions of Hypothalamic Research and Endocrinology and Metabolism, Department of Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
                [4 ]Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
                University of Michigan School of Medicine, United States of America
                Author notes

                Conceived and designed the experiments: AC MP. Performed the experiments: AC OS MP. Analyzed the data: AC MP. Contributed reagents/materials/analysis tools: OS JMZ MP. Wrote the paper: JMZ MP.

                Article
                PONE-D-11-18508
                10.1371/journal.pone.0031462
                3282735
                22363652
                48fba961-78bb-4d56-b80e-1fb726d0d024
                Cabral et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 21 September 2011
                : 8 January 2012
                Page count
                Pages: 10
                Categories
                Research Article
                Biology
                Anatomy and Physiology
                Endocrine System
                Endocrine Physiology
                Biochemistry
                Molecular Cell Biology
                Cellular Types
                Signal Transduction
                Signaling Cascades
                Neuroscience
                Neurophysiology
                Medicine
                Endocrinology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article