79
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Histone Deacetylase Inhibitors Impair the Elimination of HIV-Infected Cells by Cytotoxic T-Lymphocytes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Resting memory CD4 + T-cells harboring latent HIV proviruses represent a critical barrier to viral eradication. Histone deacetylase inhibitors (HDACis), such as suberanilohydroxamic acid (SAHA), romidepsin, and panobinostat have been shown to induce HIV expression in these resting cells. Recently, it has been demonstrated that the low levels of viral gene expression induced by a candidate HDACi may be insufficient to cause the death of infected cells by viral cytopathic effects, necessitating their elimination by immune effectors, such as cytotoxic T-lymphocytes (CTL). Here, we study the impact of three HDACis in clinical development on T-cell effector functions. We report two modes of HDACi-induced functional impairment: i) the rapid suppression of cytokine production from viable T-cells induced by all three HDACis ii) the selective death of activated T-cells occurring at later time-points following transient exposures to romidepsin or, to a lesser extent, panobinostat. As a net result of these factors, HDACis impaired CTL-mediated IFN-γ production, as well as the elimination of HIV-infected or peptide-pulsed target cells, both in liquid culture and in collagen matrices. Romidepsin exerted greater inhibition of antiviral function than SAHA or panobinostat over the dose ranges tested. These data suggest that treatment with HDACis to mobilize the latent reservoir could have unintended negative impacts on the effector functions of CTL. This could influence the effectiveness of HDACi-based eradication strategies, by impairing elimination of infected cells, and is a critical consideration for trials where therapeutic interruptions are being contemplated, given the importance of CTL in containing rebound viremia.

          Author Summary

          The advent of antiretroviral therapy has greatly improved the prognosis for HIV-infected individuals with access to care. However, current therapies are unable to cure infection, committing treated individuals to a lifetime of medication with significant economic burden. Furthermore, it has become clear that antiretroviral therapy does not completely restore health, leaving treated HIV-infected individuals at increased risk of cardiovascular disease, neurological disorders, and other health issues. Thus, there is a need to develop therapies capable of curing HIV infection. It is thought that, to be successful, curative strategies will need to combine a means to flush the virus out of the latently-infected cells in which it hides, with a means to kill these unmasked targets. A front-running approach proposes to use a class of drugs called histone deacetylase inhibitors (HDACis) as flushing agents, with cytotoxic T-lymphocytes (CTL, or killer T-cells) to purge viral reservoirs. Here, we uncover an unexpected negative interaction between these two agents, whereby HDACis suppress the ability of CTL to kill HIV-infected cells. This interaction has the potential to limit the effectiveness of combining CTL with HDACis in flush and kill approaches to HIV eradication, and should be considered in the prioritization and optimization of potential curative strategies.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy.

          The hypothesis that quiescent CD4+ T lymphocytes carrying proviral DNA provide a reservoir for human immunodeficiency virus-type 1 (HIV-1) in patients on highly active antiretroviral therapy (HAART) was examined. In a study of 22 patients successfully treated with HAART for up to 30 months, replication-competent virus was routinely recovered from resting CD4+ T lymphocytes. The frequency of resting CD4+ T cells harboring latent HIV-1 was low, 0.2 to 16.4 per 10(6) cells, and, in cross-sectional analysis, did not decrease with increasing time on therapy. The recovered viruses generally did not show mutations associated with resistance to the relevant antiretroviral drugs. This reservoir of nonevolving latent virus in resting CD4+ T cells should be considered in deciding whether to terminate treatment in patients who respond to HAART.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells.

            Evidence suggests that CD8+ T lymphocytes are involved in the control of human immunodeficiency virus (HIV) infection in vivo, either by cytolytic mechanisms or by the release of HIV-suppressive factors (HIV-SF). The chemokines RANTES, MIP-1 alpha, and MIP-1 beta were identified as the major HIV-SF produced by CD8+ T cells. Two active proteins purified from the culture supernatant of an immortalized CD8+ T cell clone revealed sequence identity with human RANTES and MIP-1 alpha. RANTES, MIP-1 alpha, and MIP-1 beta were released by both immortalized and primary CD8+ T cells. HIV-SF activity produced by these cells was completely blocked by a combination of neutralizing antibodies against RANTES, MIP-1 alpha, and MIP-1 beta. Recombinant human RANTES, MIP-1 alpha, and MIP-1 beta induced a dose-dependent inhibition of different strains of HIV-1, HIV-2, and simian immunodeficiency virus (SIV). These data may have relevance for the prevention and therapy of AIDS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Stimulation of HIV-1-specific cytolytic T lymphocytes facilitates elimination of latent viral reservoir after virus reactivation.

              Highly active antiretroviral therapy (HAART) suppresses HIV-1 replication but cannot eliminate the virus because HIV-1 establishes latent infection. Interruption of HAART leads to a rapid rebound of viremia, so life-long treatment is required. Efforts to purge the latent reservoir have focused on reactivating latent proviruses without inducing global T cell activation. However, the killing of the infected cells after virus reactivation, which is essential for elimination of the reservoir, has not been assessed. Here we show that after reversal of latency in an in vitro model, infected resting CD4(+) T cells survived despite viral cytopathic effects, even in the presence of autologous cytolytic T lymphocytes (CTLs) from most patients on HAART. Antigen-specific stimulation of patient CTLs led to efficient killing of infected cells. These results demonstrate that stimulating HIV-1-specific CTLs prior to reactivating latent HIV-1 may be essential for successful eradication efforts and should be considered in future clinical trials. Copyright © 2012 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                August 2014
                14 August 2014
                : 10
                : 8
                : e1004287
                Affiliations
                [1 ]The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston, Massachusetts, United States of America
                [2 ]Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
                [3 ]Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
                [4 ]Massachusetts General Hospital, Boston, Massachusetts, United States of America
                [5 ]The Maple Leaf Medical Clinic, Toronto, Ontario, Canada
                [6 ]Department of Medicine, University of Toronto, Toronto, Ontario, Canada
                [7 ]Li Ka Shing Medical Institute, St. Michael’s Hospital, Toronto, Ontario, Canada
                [8 ]Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
                Emory University, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: RBJ GLS MF ML DJI BDW. Performed the experiments: RBJ RO SM GLS DK ML AT. Analyzed the data: RBJ RO SM GLS. Contributed reagents/materials/analysis tools: ML. Wrote the paper: RBJ. Contributed patient samples: MAO CK. Supervised the project: DJI BDW.

                Article
                PPATHOGENS-D-14-00100
                10.1371/journal.ppat.1004287
                4133386
                25122219
                48fccb4e-0092-4751-8471-4845015b2f82
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 12 January 2014
                : 18 June 2014
                Page count
                Pages: 19
                Funding
                This work was supported in part by the Ragon Institute of MGH, MIT, and Harvard. RBJ is a Banting Fellow of the Canadian Institute of Health Research and an Ontario HIV Treatment Network Junior Investigator. GLS is supported by a Ruth L. Kirschstein National Research Service Award from the NIH. BDW and DJI are investigators of the Howard Hughes Medical Institute. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and life sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Blood Cells
                White Blood Cells
                T Cells
                Immune Cells
                Immunology
                Clinical immunology
                HIV immunopathogenesis
                Immunomodulation
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Viral Pathogens
                Immunodeficiency Viruses
                HIV
                Medicine and Health Sciences
                Infectious Diseases
                Viral Diseases

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article