8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Visualization of Corticotropin-Releasing Factor Neurons by Fluorescent Proteins in the Mouse Brain and Characterization of Labeled Neurons in the Paraventricular Nucleus of the Hypothalamus

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          A robust and high-throughput Cre reporting and characterization system for the whole mouse brain

          The Cre/lox system is widely used in mice to achieve cell-type-specific gene expression. However, a strong and universal responding system to express genes under Cre control is still lacking. We have generated a set of Cre reporter mice with strong, ubiquitous expression of fluorescent proteins of different spectra. The robust native fluorescence of these reporters enables direct visualization of fine dendritic structures and axonal projections of the labeled neurons, which is useful in mapping neuronal circuitry, imaging and tracking specific cell populations in vivo. Using these reporters and a high-throughput in situ hybridization platform, we are systematically profiling Cre-directed gene expression throughout the mouse brain in a number of Cre-driver lines, including novel Cre lines targeting different cell types in the cortex. Our expression data are displayed in a public online database to help researchers assess the utility of various Cre-driver lines for cell-type-specific genetic manipulation.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A transgenic mouse line that retains Cre recombinase activity in mature oocytes irrespective of the cre transgene transmission.

              The Cre/loxP site-specific recombination system derived from bacteriophage P1 provides a convenient tool for directed modifications of genomes in various organisms. To exploit Cre-mediated manipulation of mouse genomic sequences at the zygote stage, we have developed a transgenic mouse line carrying the CAG-cre transgene in which the cre gene is under control of the cytomegalovirus immediate early enhancer-chicken beta-actin hybrid (CAG) promoter. The activity of the Cre recombinase at early stages of development was examined by crossing the CAG-cre transgenic mice to another transgenic mouse line carrying a reporter gene construct, CAG-CAT-Z, which directs expression of the E. coli lacZ gene upon Cre-mediated excision of the loxP-flanked chloramphenicol acetyltransferase (CAT) gene located between the CAG promoter and the lacZ gene. PCR-based analysis of F1 progeny from CAG-cre males x CAG-CAT-Z females showed that transmission of the CAG-cre transgene was accompanied by the complete deletion of the CAT gene of the CAG-CAT-Z transgene in all tissues, and that this deletion was never observed in the progeny without transmission of the CAG-cre gene. On the other hand, analysis of F1 mice from CAG-CAT-Z males x CAG-cre females showed that the CAG-CAT-Z transgene had undergone complete deletion of the CAT gene in all tissues irrespective of the cotransmission of the CAG-cre gene. This Cre-mediated recombination in F1 mice occurred before the two-cell stage of embryonic development, as shown by X-gal staining. The results suggest that the CAG-cre transgene is expressed in developing oocytes of CAG-cre transgenic mice, and Cre mRNA and/or protein are retained in mature oocytes irrespective of the transmission of the CAG-cre transgene, resulting in efficient Cre-mediated recombination of paternally derived target genes upon fertilization. The CAG-cre transgenic mouse should serve as a useful tool to introduce prescribed genetic modifications into the mouse embryo at the zygote stage.
                Bookmark

                Author and article information

                Journal
                Endocrinology
                The Endocrine Society
                0013-7227
                1945-7170
                October 01 2014
                October 01 2014
                : 155
                : 10
                : 4054-4060
                Affiliations
                [1 ]Laboratory of Information Biology (K.I., A.H.T., T.F., T.K., R.O., T.Sa., T.Su., K.U.), Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan
                [2 ]Department of Neuroendocrinology (K.I.), Graduate School of Medicine, Tohoku University, Sendai 980-8579, Japan
                [3 ]Department of Cellular Neurobiology (M.Y., M.A., R.N., K.S.), Brain Research Institute, Niigata University, Niigata 951-8585, Japan
                Article
                10.1210/en.2014-1182
                25057791
                49056283-8cbe-4db4-a26c-f7f79fe751fe
                © 2014
                History

                Quantitative & Systems biology,Biophysics
                Quantitative & Systems biology, Biophysics

                Comments

                Comment on this article